
1

Series Introduction

Welcome
Welcome to a Best-in-Class iOS App. Here, you will find nearly all the things I’ve

learned from having more than a decade of experience creating iOS apps. I’ve made

award-winning apps, terrible apps, and some in-between that spectrum. The ones that

were great, though, all shared common approaches and characteristics - and that’s

what I want to share with you.

You’re reading this because you care: You want to make a great app. But what

does that look like now? Surely, the definition has changed over the years.

At first, it was ensuring you filled the iPhone’s original 320 by 480 pixel screen with

enough information to make the task at hand quick and efficient. Then, it shifted to

adapting to new screen sizes. Today, the term “iOS app” is nearly a misnomer - your

binary at this moment could run on iOS, tvOS, iPadOS, macOS, visionOS and

watchOS.

2

 
What used to be a single app can now appear in several places in the Apple ecosys-

tem.

Oh - and SwiftUI. Now we’ve got a completely new way to not only make an iOS app,

but one that also runs across the entire Apple ecosystem. Where does that fit in? Do

you still use UIKit, a mix - just one or the other?

This book series is here to help you make sense of all of those questions. The

world of iOS development went from big to gigantic, and it’s not stopping. That’s

great news for the platform, but it does make keeping up with the thought of “What

makes this great and how do I do that?” a bit harder to comprehend, much less do.

Who Am I?

As I mentioned above, I started out in the iOS industry with some misses. Over the

years, I dedicated myself to learning more about what makes iOS software amazing.

3

I’ve started with solid ideas for apps, even ones people found valuable and solved a

problem they had well.

After I launched them, I found out that they didn’t stick the landing in so many

ways. Hidden gestures were the only means to navigate, colors felt off and many of

the things users expected to be present in an iOS app simply weren’t there. Discover-

ing early on that design was paramount, and my coding skills could only take me so

far, was probably the line in the sand for my career. There were apps I made before it,

and after.

As of this writing, my last app (Spend Stack) had critical acclaim, regular press cov-

erage, was featured year-round by Apple’s App Store editors, and was even selected

as a retail demo app to be used throughout stores on iPads and iPhones all over,

eventually leading to its acquisition. At my job at Buffer, applying many of the princi-

ples I learned helped us achieve a Webby award for Mobile Apps: Best Practices.

None of that happened by accident, though I will be forever thankful for the praise

that my work, and things I worked on with other talented engineers, received.

What I have found is this: design isn’t the only thing, but it’s likely the most impor-

tant one. And you can prescribe whichever definition you have for “design” here, and

there are many. But to me, design is what it looks like, feels like, the emotions it in-

vokes with users, the technology it leverages and more. So in that sense, this book is

primarily about design - because design can stem from the way you leverage an API

as much as it can from using the right typography.

My hope is that from getting a sense of who I am and where I’ve been, you can

feel confident that someone is writing these words who is in a good position to help

you achieve the things you want to with your future iOS endeavors.

With that, allow me to welcome you to A Best-in-Class iOS App. Let’s get started.

4

How to Use These Books
I’ve organized the book series to be leafed through, though you can certainly ap-

proach it in a linear fashion if you’d like. Keep in mind that there is simply a massive

amount of information to digest within it. For that reason, I suggest you find topics that

are either relevant to a task at hand or an API that simply interests you. Skipping

around to what you need, when you need it is what I had in mind when writing this.

There are five main topics covered, and those are:

1. Accessibility

2. Design

3. User Experience

4. iOS Technologies and Frameworks

5. General Tips

I suspect the majority of readers will naturally gravitate towards section 4, as that is

where the bulk of what many consider to be core ‘iOS Development’ topics are found.

Though, I encourage you to dissect all the topics, in due time, as best as you can.

With that said, you’ll find that each section can be written in one of two ways; Ei-

ther a traditional, long-form explanation to explain the current section or topic, or a

three-pronged approach covering the what, how and some tips on the subject. This is

not so much a tutorial book, though you’ll certainly find plenty of code samples.

For experienced developers, this book is more about how to use the technologies

you’re likely familiar with in ways that can help make your app great. For newer ones,

it’s an introduction to the wide world of iOS and how to use the tools within. Or, just as

importantly, it’ll help you discover new ones you might not have known about while

also paying close attention to design and user experience.

5

Why these topics?

I’ve found that knowing about technology or APIs is never enough. It’s inherently excit-

ing to engineers such as myself, because these are the things we long to know more

about. But unless we apply tact, care and even a hint of resiliency to our software, we

won’t get far.

That’s where design, user experience and accessibility start to enter the picture -

and we’ll cover each in earnest. Then, knowing how to use the tools available to you to

debug difficult problems helps you become a well-rounded engineer, equipped to

deal with many of the issues you’ll encounter along the way.

 
A wide range of skills is required to make something great.

A best-in-class app requires all of these things. My goal is to bring your apps to every-

one (accessibility), make sure it gets covered by the press and loved by users (design

and user experience), ultimately get Apple’s eyes on it (iOS technologies and frame-

6

works) while allowing you to be ready for any roadblocks along the way (the tips jour-

nal).

To that end, here’s how you can think about this book series. It’s like the human in-

terface guidelines and documentation combined into short, applicable posts. My

hope is that you can thumb through any part of it and find something to take away

from the text to make your software shine.

SwiftUI and UIKit

SwiftUI is Apple’s most recent foray into making a cross-platform (for Apple’s ecosys-

tem, at least), declarative user interface framework. Its nascent nature means it’s lack-

ing in some areas, but make no mistake - this is the future of software engineering on

Apple’s platforms.

It also means it has over a decade of holes to fill that are plugged in nicely by UIK-

it, Apple’s existing user interface framework primarily used by iOS. If you bring in mac-

OS’s toolkit, AppKit, then you’ve got over two decades of catching up to do.

Why mention all of this? Simply to set expectations, I think developers should be

familiar with both. The situation harkens back to the early days of the Swift program-

ming language itself when it lacked many features developers relied on such as error

handling. Over time, Swift has accommodated all of those shortcomings, and SwiftUI

will, too.

But today - using and being comfortable with both frameworks will serve you well.

There are simply things you cannot do in SwiftUI, and dipping down into UIKit be-

comes necessary. To that end, you’ll see both frameworks frequently covered.

7

Where to Find What

Lastly, you may be surprised to find certain topics in sections you may not have ex-

pected. For example, take Apple’s dynamic type technology. If you’re unfamiliar, this

API allows text to scale in size according to user preferences. Peeling this back, it deals

with:

- Text and any text-based control, such as UIKit’s UILabel or SwiftUI’s Text

control.

- Accessibility, and allowing text to be read by all users of your app.

So where should it go? In a section that covers the controls that house text itself, or ac-

cessibility? The answer will vary from topic to topic, but if you find yourself looking in

one section for something you expected to find there and it’s not, it may be covered in

another tangentially related section.

Chapter Makeup

Almost every chapter in this book is written in the same format. It has three parts:

1. A brief, one to two paragraph, introduction on the topic.

2. A “How it Works” kickoff. Again, I assume you have iOS experience for

technical topics, this book’s focus is how to take these APIs to their fullest

extent underneath the “Tips” section, but I still include the “How it Works”

to get you up to speed in case you need a little refresher. In some chap-

ters, this may be the majority of the content because the bulk of the API or

topic really is solely about how it works and how to use it.

8

3. Finally, a bullet list style breakdown of APIs, properties, and techniques.

For other topics, a more traditional, long-form chapter makes more sense. For exam-

ple, some of the design topics.

Corrections or Suggestions

If you find any errors, or there is a topic you’d like to see added or expanded upon -

please reach out. Keep in mind this book is never finished, and I look forward to

adding topics that people are passionate about, need help with or want to see ex-

panded upon.

Please use the private Discord server to suggest these types of things. You can

find out how to get setup there by reading the “READ FIRST” .pdf included in your

package.

If for any reason you opted not to join the community, you can also use other

channels. Please send longer form messages by email to jordan@swiftjectivec.com

and shorter, quick suggestions via X to @jordanmorgan10.

What I Assume About You

In short - nothing. The only thing that would be required is that you have a knowledge

of programming for the technical aspects of this book. This book will not be focused

on teaching you how to program, and instead focuses directly on how to use Apple’s

many APIs and use them well.

Of course, that works in the other direction as well. Nearly 40% of this book series

is focused on design and user experience. So, if you’ve got a design background

9

some of the content may seem obvious to you. Or, if you’ve been developing on iOS

for a decade, some chapters or elements may come across as elementary.

In short, I write as if I’m teaching these concepts for the first time to whoever may

be reading. Experienced developers - enjoy the little nuggets of information about

things you are familiar with but can find something new to learn about. New develop-

ers, take it all in and realize it takes years to learn all of this. The same goes for all of

the design topics.

As a last aside, I know many readers just want to “get to it” and skip the introduc-

tions and pleasantries. No matter if you’ve purchased the entire book series or simply

one book, you can skip around as you please to get to the topics that matter to you.

What’s Not in this Book Series
I’ve made every effort to include APIs and topics that will help you make a better app.

That’s my North Star when I sat down and brainstormed what this book could look like.

While there is a large surface area covered, I’d like to be upfront about what’s not in-

cluded. There may be some API here and there that isn’t included, but from a major

frameworks standpoint, I’ve opted to not include the following:

- AirPlay

- Game Frameworks (Apple Arcade, Games, Game Center, SceneKit and

SpriteKit)

- ARKit

- Apple News Format

- Apple Pay

10

- Business Chat

- Bonjour

- CareKit, ClassKit, ResearchKit or HealthKit

- Catalyst

- CarPlay

- Exposure Notifications

- MusicKit

- HomeKit

- iBeacon

- Game Center

- Keyboard Extensions

- Wallet and Passkit

In future editions of the series, that list may change with frameworks being added or

removed.

Also, please keep in mind that the version of this book series you are currently

reading is the shortest version you’ll ever have. I continue to update it annually, and

when new frameworks and tooling ship - they will also appear in this book according-

ly. This is much less a traditional book, it helps to think of it more like versioned soft-

ware. A living, breathing document that will stay at your side throughout your iOS jour-

ney.

11

The Rotor Control
The rotor control helps make navigation quicker. That’s what it does at its very core.

Consider the user interface below:

 
Visual cues play an important role to navigation.

Visually, we get the benefit of context fairly quickly. We can pick out a few main head-

ings, reason about content sections and generally get a feel for how we want to navi-

gate the view. For example, we may not be interested in the top “Next Five Days” sec-

tion since we intended to revisit the “Last Five Days” section right away.

We can do that because we can see it. And when we can see it, we reason about

where we want to go. In this case, we’ve seen that there are two main categories here,

and based off of that - we chose to “navigate” to the second one.

The Rotor Control can give VoiceOver users that same affordance. One of its many

benefits is that it can tell VoiceOver to only navigate by, or to, certain elements (such

12

as headers). In our example above, that would allow VoiceOver users to navigate with

the same efficiency as users who aren’t visually impaired might.

 
The Rotor Control on iOS.

The Rotor Control has several ways to help with navigation. In fact, its capabilities shift

with the context. There are options to change the speaking rate of VoiceOver, move to

only misspelled words in text, change input methods and more.

So, how do developers fit into the Rotor Control? Primarily, two ways.

First, we can create our own rotors to hand off to the system’s Rotor Control to

make custom categorical navigation possible for VoiceOver users. This is what we fo-

cus on in this chapter. If you find yourself in a situation where you’ve got an interface

that would make sense to navigate to categorically, and the system’s default rotors

don’t cover it - then you’ve found a great opportunity to supply your own custom rotor

to fill that gap.

13

Secondly, we can make sure we’re using the correct accessibilityTraits in

our apps to make sure the system provided rotor controls behave as users expect. If

we’ve built a custom header-like element but we haven’t indicated to the system that it

is a header-like element, then we’re essentially taking away functionality from Voice-

Over users.

How it Works

Let’s kick things off with UIKit. Any NSObject has a custom rotors property we can as-

sign to:

open var accessibilityCustomRotors:[UIAccessibilityCustomRotor]?

When we assign to it, those rotors become available to VoiceOver. Each rotor needs

to know a few things:

1. The name or type of the rotor

2. The next element that it should navigate to

To vend that information, you’ll be dealing with three classes and one type aliased clo-

sure:

1. UIAccessibilityCustomRotor

2. UIAccessibilityCustomRotorItemResult

3. UIAccessibilityCustomRotorSearchPredicate

4. public typealias Search = (UIAccessibilityCustomRotor-

SearchPredicate) -> UIAccessibilityCustomRotorItemRe-

sult?

14

The rotor houses all of the information. The result is returned by us to let the active

rotor know which element to go to next. The search predicate exposes what element

is focused and which direction the user is navigating (in Rotor Control terms, either up

(.previous) or down (.next). Finally, the search closure gives you the last active

predicate while returning the next rotor item.

Let’s look at an end-to-end example. Consider a row that has four square views in

it, and that a view controller is showing three of these rows. Each row has a different

color, and each square within the row has a .button accessibility trait and the user

can swipe through each one.

 

Without doing anything, if they want to see the colors in the last row, they’d have to

swipe towards it several times to get there.

With a custom rotor, we could simplify things two ways:

15

1. Provide a custom rotor that toggles each active row in of themselves (i.e.

flick up and down to switch rows) or

2. Provide three custom rotors, one for each color, where flicking up and

down navigates to each square in the row.

Remember, when a rotor is active - the primary navigation gesture is swiping up or

down to select items within that rotor’s category. Users can, and commonly do, still

swipe left and right to navigate through the view’s hierarchy still. A rotor is used in tan-

dem with typical VoiceOver navigation.

We’ll tackle example one in SwiftUI further down. So for example two, here’s what

an implementation might look like:

// UIKit -> Xcode -> RotorControlFig1ViewController.swift

private func colorRowRotor(forColor color:String, stack:UIStackView)

-> UIAccessibilityCustomRotor {

 return UIAccessibilityCustomRotor(name: color) { searchPredicate

in

 // Ensure we've got a square that's focused

 guard let currentFocusedSquare =

searchPredicate.currentItem.targetElement as? UIView else {

 return nil

 }

 // Find the index of the square in the current stack view

 let indexOfCurrentSquare =

stack.arrangedSubviews.firstIndex(of: currentFocusedSquare)

 let nextIndex: Int

 // Did the user swipe up, or down?

 switch searchPredicate.searchDirection {

 case .next:

 nextIndex = (indexOfCurrentSquare ?? 1) - 1

 case .previous:

16

 nextIndex = (indexOfCurrentSquare ?? -1) + 1

 @unknown default:

 fatalError()

 }

 // Ensure selecting the next square won't crash, this

 // Is basically signaling to VoiceOver we've either

 // Reached the end or the beginning of the elements

 guard 0..<stack.arrangedSubviews.count ~= nextIndex else {

 return nil

 }

 // VoiceOver will focus next based off of this result

 let result =

UIAccessibilityCustomRotorItemResult(targetElement:

stack.arrangedSubviews[nextIndex],

targetRange: nil)

 return result

 }

}

Using this custom rotor function to create three rotors, the user could toggle to either

“Red”, “Blue” or “Green” and the rotor would focus to that particular row with the next

swipe up or down. Sequential swipes would then navigate through the squares in the

row itself.

If we had implemented a single rotor instead of three (one for each row), we could

have one single rotor called something like “Color Rows”, where each swipe up or

down would take you to the next row and swipes left and right would navigate within

them. It’s up to you to figure out which ways to implement these custom rotors - but

try to create them in such a way that they navigate how users who aren’t visually im-

paired would scan and use your user interface.

17

When creating the implementation for a custom rotor, you’re essentially responsi-

ble for:

1. Tracking the user’s search direction

2. Returning the next item that belongs to the rotor based off of that

Another common way VoiceOver users rely on rotors is for long form text. Consider

release notes for an app. If you or I were to implement a custom view, regardless of

whether or not we used SwiftUI or UIKit, we might have one or more text controls list-

ing everything out.

Visually, we’d likely make each release more distinct from the rest of the text. That

means when folks view it, they are likely scanning the interface version by version.

 

Since VoiceOver users don’t get that by default, one way to solve this would be with a

custom rotor. Thankfully, the rotor control has a initializer specifically for text ranges:

18

// UIKit -> Xcode -> RotorControlFig2ViewController.swift

private func versionReleaseRotor() -> UIAccessibilityCustomRotor {

 return UIAccessibilityCustomRotor(name: "Releases") { [unowned

self] searchPredicate in

 guard let currentTextView =

searchPredicate.currentItem.targetElement as? UITextView else {

 return nil

 }

 var nextTextView: UITextView?

 let swipedNext = searchPredicate.searchDirection == .next

 if currentTextView == firstReleaseTextView {

 nextTextView = swipedNext ? secondReleaseTextView : nil

 } else if currentTextView == secondReleaseTextView {

 nextTextView = swipedNext ? thirdReleaseTextView :

firstReleaseTextView

 } else {

 nextTextView = swipedNext ? nil : secondReleaseTextView

 }

 guard let textView = nextTextView else { return nil }

 let versionTextRange = versionTextPosition(in: textView)

 return UIAccessibilityCustomRotorItemResult(targetElement:

textView,

 targetRange:

versionTextRange)

 }

}

Notice that the logic and flow is extremely similar, but now we’re dealing with where in

text the rotor should go along with the text control that contains it instead of in terms

of a simple object1. This implementation requires a bit more tact that the one above,

 1 For example, the previous examples sent nil for the text range parameter. Sending an object is
non-negotiable though, it’s not a nullable type.

19

so if you can reconfigure your view setup to support the previous way of supporting a

rotor control - by all means, do so.

However, I’d invite you not to be intimidated by this approach. Apple supplied it

for a reason, and it’s built specifically for text-based navigation. It’s mostly a matter of

translating a range of text into one UITextPostition object, so be sure to comb

through the sample code to get a feel for it.

SwiftUI

Moving on, SwiftUI has robust support for the Rotor Control as well. It houses the

same ideas that its UIKit counterpart has used over the years, but they are expressed

primarily via modifiers and the AccessibilityRotorEntry struct.

Rotor APIs in SwiftUI rely heavily on a view’s identity. That is, it matches a rotor, and

where to navigate to using that rotor, to a view whose identifier matches the same one

the rotor has. Or, it can rely on some arbitrary data’s identifiable member. Finally, you

can utilize a namespace for more complex view hierarchies using either of the previ-

ous approaches to signify identity.

Using Identifiable Entries

Consider an interface of video games that can be favorited. We could make a cus-

tom rotor to navigate only to favorited games. Looking at the model for video game,

we could leverage the isFavorited property to handle this.

// SwiftUI -> Xcode -> RotorControlFig1View.swift

extension Array where Element == VideoGame {

 var favorited: [VideoGame] { filter { $0.isFavorite }}

}

struct RotorControlFig1View: View {

 private let games: [VideoGame] = VideoGame.data

20

 var body: some View {

 List(games){ game in

 VideoGameCell(game: game)

 }

 .accessibilityRotor("Favorited Games", entries:

games.favorited, entryLabel: \.name)

 }

}

The .accessibilityRotor modifier here allows us to supply a name for the rotor,

signify what data to match against and finally a key path to a member of that identifi-

able data for using-facing purposes. Currently, that last part only applies for macOS.

With that, the user can now navigate exclusively to their favorited games:

 
A custom rotor in SwiftUI provides all of the same benefits as its UIKit counterpart.

The Rotor Control APIs for SwiftUI are very flexible. We could achieve the exact same

effect by leveraging the AccessibilityRotorEntry struct directly. The fact that

21

each item in a List must be identifiable already means they all should have a unique,

stable identifier we can use for the rotor:

// SwiftUI -> Xcode -> RotorControlFig2View.swift

struct RotorControlFig2View: View {

 private let games: [VideoGame] = VideoGame.data

 var body: some View {

 List(games){ game in

 VideoGameCell(game: game)

 }

 .accessibilityRotor("Favorited Games") {

 ForEach(games, id: \.id) { game in

 if game.isFavorite {

 AccessibilityRotorEntry(game.name, id: game.id)

 }

 }

 }

 }

}

This approach has us leveraging a ViewBuilder to construct our custom rotor and its

contents. In this case, we use the same data the list is using to create a rotor for each

favorited game.

Regardless of the approach, you may have already spotted a similarity beyond the

need for an identifier. Each of these techniques used a ForEach or a ScrollView with

explicit identifiers. What do we do when we don’t have that?

For example, what if your view is constructed from a VStack. Let’s revisit the color

rows example we created in UIKit, and create a rotor to navigate to each of them.

Here’s how the view is constructed:

// SwiftUI -> Xcode -> RotorControlFig3View.swift

22

// Abbreviated.

var body: some View {

 VStack {

 HStack {

 ColorSquareRow(colors: redColors.colors)

 }

 Spacer()

 HStack {

 ColorSquareRow(colors: blueColors.colors)

 }

 Spacer()

 HStack {

 ColorSquareRow(colors: greenColors.colors)

 }

 }

}

Now we’ve got a problem. If we only had the first two approaches at our disposal,

we’d have to change up the view hierarchy to support a custom rotor. Currently, this

code isn’t built using a List, ForEach or ScrollView with views represented using

identifiers.

To address this, we can explicitly state which element should be matched to a cus-

tom rotor by using the .accessibilityRotorEntry modifier. In fact, these views

could be across many other views because they’ll use two things to pair rotor control

entries to the correct custom rotor:

1. An identifier, as we’ve used in the previous examples.

2. A namespace, which tells the rotor control where that entry is. It could be

in the same view or an entirely different view from where the rotor control

modifier was used.

23

Let’s put all of those ideas together to recreate the color row custom rotor. Only this

time, we’ll switch it up from the UIKit example and create just one rotor to navigate to

each color row as opposed to creating one for each:

// SwiftUI -> Xcode -> RotorControlFig3View.swift

struct RotorControlFig3View: View {

 let redColors: ColorsModel = ColorsModel(color: .red)

 let blueColors: ColorsModel = ColorsModel(color: .blue)

 let greenColors: ColorsModel = ColorsModel(color: .green)

 @Namespace private var customRotorNamespace

 var body: some View {

 VStack {

 HStack {

 ColorSquareRow(colors: redColors.colors)

 }

 .id(redColors.id)

 .accessibilityRotorEntry(id: redColors.id, in:

customRotorNames)

 Spacer()

 HStack {

 ColorSquareRow(colors: blueColors.colors)

 }

 .id(blueColors.id)

 .accessibilityRotorEntry(id: blueColors.id, in:

customRotorNames)

 Spacer()

 HStack {

 ColorSquareRow(colors: greenColors.colors)

 }

 .id(greenColors.id)

 .accessibilityRotorEntry(id: greenColors.id, in:

customRotorNames)

 }

 .accessibilityRotor("Color Rows") {

24

 let rowID: [UUID] =

[redColors.id,blueColors.id,greenColors.id]

 ForEach(rowID, id: \.self) { model in

 AccessibilityRotorEntry("Color Rows", model, in:

customRotor)

 }

 }

 }

 private struct ColorSquareRow: View {

 let colors: [ColorRowModel]

 var body: some View {

 ForEach(colors) { colorModel in

 ColorSquare(model: colorModel)

 }

 }

 }

 private struct ColorSquare: View {

 let model: ColorRowModel

 var body: some View {

 Rectangle()

 .fill(model.color)

 .frame(width: 64, height: 64)

 .accessibilityAddTraits(.isButton)

 }

 }

}

By giving each HStack an associated identifier and a namespace, we can then pair it

with a rotor entry modifier explicitly instead of creating one later on in a View-

Builder. Now, SwiftUI can match it up with a rotor control defined from pretty much

anywhere. In our case, that’s just at the root of the parent view — but it doesn’t have to

25

be. There’s no need for a List, or something that already implicitly demands identity,

or even for it to be in the same view definition.

Each approach ties its utility to the amount of scale you require. For most views,

the first two approaches should suffice. But for cases where the views don’t have an

implicit container using identity or they might span multiple views due to SwiftUI’s in-

herent knack for composition — the last approach has you covered.

To recap the amount of utility this API provides:

1. The first example used implicitly made rotor control entries.

2. The second example used explicitly made rotor control entries for all views

that needed one by matching identifiers to data in a List.

3. The third example also used explicitly made rotor control entries, but they

were created by each individual view that needed one via a modifier. Then,

those were matched together by a rotor control modifier and a name-

space.

Text Ranges

Finally, SwiftUI also supports text ranges like UIKit does. In fact, it’s a bit simpler to

boot as it just needs an array of Swift’s Range<String.Index> type. Consider an in-

terface which listed employee phone numbers. We could add a rotor to simply move

straight to them:

26

 
Once the rotor is activated, it can skip to certain parts of the text marked via text

ranges.

The code looks like the previous modifiers, except instead of identifiers we use text

ranges. In particular, notice how phoneRanges() hands off the phone number ranges

to the accessibilityRotor modifier:

// SwiftUI -> Xcode -> RotorControlFig4View.swift

struct RotorControlFig4View: View {

 @State private var welcomeText = """

Welcome to Apple! Here's the official employee directory.All of

these folks are readily available to help you out with your first

day working at Cupertino!

Tim Cook

E: tim@apple.com

P: (417)-417-1234

Phil Schiller

E: phil@apple.com

27

P: (417)-417-1234

Eddy Cue

E: eddy@apple.com

P: (417)-417-1234

"""

 var body: some View {

 TextEditor(text: $welcomeText)

 .font(.system(size: 22, weight: .medium,

design: .rounded))

 .padding()

 .accessibilityRotor("Employee Phone Numbers",

textRanges: self.phoneRanges())

 }

 private func phoneRanges() -> [Range<String.Index>] {

 let phoneRegex: String = "[(][0-9]{3}[)][-][0-9]{3}[-][0-9]

{4}"

 guard let regexPattern = try? NSRegularExpression(pattern:

phoneRegex, options: .caseInsensitive) else {

 return []

 }

 let welcomeTextRange = NSRange(welcomeText.startIndex...,

in: welcomeText)

 let phoneNumMatches = regexPattern.matches(in: welcomeText,

options: [], range: welcomeTextRange)

 return phoneNumMatches.compactMap { Range($0.range, in:

welcomeText) }

 }

}

I’ve also included a similar example in this file showing how you might do the same

thing, only for emails instead of phone numbers. Feel free to switch out the modifier

argument to use that instead of phoneRanges() to see how it works.

28

Tips

Know Where to Assign Rotors

When you assign to the accessibilityCustomRotors - make sure you do it in the

right place. Any UIView can have these custom rotors, so when you assign some to

any particular view, those are activated and used when that particular view is in focus.

If you need to, you can also aggregate several rotors into a view’s rotor array:

self.view.accessibilityCustomRotors =

[view1.accessibilityCustomRotors, view2.accessibilityCustomRotors,

view3.accessibilityCustomRotors].flatMap { $0 }

Using the Correct Traits and System Types

The rotor, in a sense, identifies where to go next categorically. For example, in most in-

terfaces when the rotor is activated you’ll likely see “Heading” as an option. As I point-

ed out above in “How it Works”, that means you need heading level elements to have

that accessibility trait so it’ll be exposed to the rotor control.

Conceptually, thinking in header level elements is quite trivial. But consider all of

the other types of rotors available:

public enum SystemRotorType : Int {

 case none = 0

 case link = 1

 case visitedLink = 2

 case heading = 3

 case headingLevel1 = 4

 case headingLevel2 = 5

 case headingLevel3 = 6

 case headingLevel4 = 7

 case headingLevel5 = 8

29

 case headingLevel6 = 9

 case boldText = 10

 case italicText = 11

 case underlineText = 12

 case misspelledWord = 13

 case image = 14

 case textField = 15

 case table = 16

 case list = 17

 case landmark = 18

}

On the other hand, look at that list and try and see if there’s any elements you need to

supply to the system that might would make sense to show but aren’t exposed as a ro-

tor by default. Consider the interface below:

 

By default, there is no “Image” rotor that’s vended by the system, but using the initial-

izer for custom rotor to take in a SystemRotorType, we can create one:

30

// UIKit -> Xcode -> RotorControlFig3ViewController.swift

private func imageRotor() -> UIAccessibilityCustomRotor {

 return UIAccessibilityCustomRotor(systemType: .image) { [unowned

self] predicate in

 guard let currentImage = predicate.currentItem.targetElement

as? UIImageView else { return nil }

 let nextIndex: Int

 let currentIndex =

self.stackView.arrangedSubviews.firstIndex(of: currentImage)

 switch predicate.searchDirection {

 case .next:

 nextIndex = (currentIndex ?? 1) - 1

 case .previous:

 nextIndex = (currentIndex ?? -1) + 1

 @unknown default:

 fatalError()

 }

 guard 0..<self.stackView.arrangedSubviews.count ~= nextIndex

else {

 return nil

 }

 return UIAccessibilityCustomRotorItemResult(targetElement:

self.stackView.arrangedSubviews[nextIndex],

 targetRange:

nil)

 }

}

And now, activating the rotor control will show an “Images” option that will cycle

through just the images within the interface. Notice that the initializer for the custom

rotor takes in the SystemRotorType instead of a string, and we passed in .image.

31

Returning Results

Since we leverage UIAccessibilityCustomRotorItemResult to return the next

item to select a rotor, it helps to know all of the ways you can package them up to the

system. There are really only two simple responsibilities to remember:

1. You’ll always return an item, or put differently - an object that the accessi-

bility engine can select. If your logic dictates that you don’t have one, then

you’d return nil from the rotor and not deliver a UIAccessibilityCus-

tomRotorItemResult instance. Recall that the block you use to build a

custom rotor asks you to return a nullable instance of that class - so indicat-

ing that you don’t have one is fine and in many cases the right call. It indi-

cates to VoiceOver users that they’ve reached some sort of beginning or

end.

2. Once you’ve got an object, you can also return a text range if you’re deal-

ing with text.

That’s really all VoiceOver needs from your custom rotor to navigate. On the other

hand, you’ll also receive one of these objects from the search predicate (more on that

directly below) when constructing custom rotors. This proves useful as you’ll be able

to inspect the last focused item or text range to help you vend the next accessible

item to that the rotor should navigate to.

Search Predicates

Leveraging the search predicate appears intimidating at first, but I’ve found it helps to

rename it in your head to something like “Previous Rotor Item” since that’s what it of-

ten represents. Hearing the word predicate may have you draw comparisons to

32

NSPredicate which isn’t accurate in this case. This is simply an object with some use-

ful information to help you decide what to do next.

You’ll typically use two critical pieces of information from the predicate:

1. The last item that was focused by looking at predicate.currentItem.-

targetElement

2. The direction the user swiped to reason if they want the next or previous

item:

switch predicate.searchDirection {

case .next:

 // User swiped for next item

case .previous:

 // User swiped for previous item

@unknown default:

 fatalError()

}

Custom Attributed String Keys

Since rotor results can be used in tandem with one or more text views you’ll be deal-

ing with ranges of matched text quite often. Working with a text range is tricky

enough, but you can make your life a bit easier in those situations by extending the at-

tributed string API’s key type:

extension NSAttributedString.Key {

 static let versionHeader =

NSAttributedString.Key.init("versionHeader")

}

33

Why do this? You can tack that key into your attributed text to later find its range in a

trivial fashion when you’re creating custom rotors dealing with text:

// Note the Version header attribute added last

let attributes: [NSAttributedString.Key:Any] = [.font:

UIFont.systemFont(ofSize: 24, weight: .heavy),

 .foregroundColor: UIColor.label,

 .versionHeader: NSNumber(booleanLiteral: true)]

attributedText.addAttributes(attributes, range:

 rangeOfVersion(in: textview))

Then, when you’re looking for that text to translate into a UITextRange instance, you

can look for the specific attribute without having to match raw text instead:

// Search the text view by our custom attribute

textView.attributedText.enumerateAttribute(.versionHeader, in:

NSMakeRange(0,

textView.text.count), options: []) { valueAttribute, matchedRange,

stop in

 guard valueAttribute != nil else { return }

 // Use matchedRange to get a UITextPosition from the text view

 // Then stop iterating

 stop.pointee = true

}

Avoiding Dead Rotors

If you find yourself making a custom rotor, assigning to an object’s custom rotor prop-

erty and it doesn’t show up it’s likely because the item you're returning isn’t an acces-

sible item by default.

If this happens, be sure to check that the object has isAccessibilityItem set

as true and that the accessibility traits it has lend itself to navigational purposes. For

34

example, .staticText isn’t a navigational item so it wouldn’t do anything for a rotor.

Always remember - the rotor is there to make navigation snappy. As such, it stands to

reason that the items we vend to it help accomplish that goal.

SwiftUI Views and Accessibility Container

Rotor controls look for the container accessibility trait. Some views in SwiftUI are inher-

ently using that trait, such as LazyVStack or a List. If you trying to opt a view into

the rotor that doesn’t have that trait, you might need to use the accessibilityEle-

ment(children:) modifier to allow the rotor control to pick it up:

MyCustomView()

.accessibilityElement(children: .combine)

SwiftUI and Scrolling

If you’re using a ScrollViewReader along with a custom rotor, the content you need

to show could be offscreen at the moment the rotor is used. If that’s the case, you can

scroll to it using the Rotor Control APIs.

In our example where we had a custom rotor used to scroll to different color rows

— we might add in an explicit scroll in case the user had a large list of colors and some

of them could be offscreen. In this adapted example, look at the AccessibilityRo-

torEntry initializer which now uses a trailing closure to enable a scroll:

var body: some View {

 ScrollViewReader { reader in

 VStack {

 HStack {

 ColorSquareRow(colors: redColors.colors)

 }

 .id(redColors.id)

35

 .accessibilityRotorEntry(id: redColors.id, in:

customRotorNamespace)

 Spacer()

 HStack {

 ColorSquareRow(colors: blueColors.colors)

 }

 .id(blueColors.id)

 .accessibilityRotorEntry(id: blueColors.id, in:

customRotorNamespace)

 Spacer()

 HStack {

 ColorSquareRow(colors: greenColors.colors)

 }

 .id(greenColors.id)

 .accessibilityRotorEntry(id: greenColors.id, in:

customRotorNamespace)

 }

 .accessibilityRotor("Color Rows") {

 let rowID: [UUID] =

[redColors.id,blueColors.id,greenColors.id]

 ForEach(rowID, id: \.self) { model in

 // Ensure we scroll to the row

 AccessibilityRotorEntry("Color Rows", model, in:

customRotorNamespace) {

 reader.scrollTo(model)

 }

 }

 }

 }

}

36

Three Key Takeaways

1. The Rotor Control helps VoiceOver users navigate their device efficiently.

2. We can extend the system rotor controls and provide our own.

3. Be sure to use the correct accessibility traits to ensure your existing inter-

face works great with the system-provided rotors.

Dynamic Type
Aside from VoiceOver, there may not be a higher impact accessibility API than Dynam-

ic Type. Introduced in iOS 7, it accomplishes one simple goal — make sure everyone

can read text at a size of their choosing. Supporting this API can be the difference

from someone being able to use your app, or deleting it.

That’s no exaggeration either. If you don’t support Dynamic Type, there’s a real

possibility that for some users, the text in your app simply isn’t legible. And, try using

any app with text that you can’t read.

37

 
If your font size doesn't scale correctly, users may have a hard time reading text.

From an outsider’s perspective, the simple act of letting users choose their text size

preferences would appear to have limited implications to the apps they use. But as

developers and designers, there’s a lot of angles we need to consider. Your design

will be stretched and flexed every which way and designing in absolutes is no longer

a viable option.

To make the process as simple as possible, I’ve always followed a simple set of

rules when it comes to text in my own apps. These exist to ensure my text stays acces-

sible, usable and readable:

1. All text should respond to Dynamic Type (accessible).

2. Make your layout adaptable (usable).

3. Strive to avoid text truncation (readable).

Truncation and Clipping

38

You should strive to avoid truncating text since, by its very nature, it removes some

content that your user likely wants to see. There are exceptions, of course — there al-

ways are, but for the most part text shouldn’t truncate or clip. If you are creating an

app similar to News on iOS, then perhaps headlines could truncate. But even then, the

intent is understood by most users. The headline hints at the rest of the content.

On the other hand, if you’ve got text that explains a feature which clips at a higher

text size — now you’ve got a problem. This is content that was viewable at a lower text

size, but now isn’t. This also fails the accessibility smell test since content is being tak-

en away from a user solely based off one of their accessibility preferences they rely on.

 
Clipping or truncating text is rarely a good idea.

Adaptability

Your layout should remain adaptable to support text both small and large. In

short, this means you might need to flip from a horizontal layout to a vertical one at a

39

moment’s notice. You can see this occurring all throughout iOS. Open up any stock

app from Apple at a default text size, and then change it to the largest text style. In

most cases, the layout shifts from a horizontal axis to a vertical one:

 
Notice how the interface flips to a vertical axis once the text size was increased.

Text Resizing

And of course, you should opt in text to support Dynamic Type. Though it may

seem challenging to implement at first, due to the unpredictability of the font size

your interface may be showing, it becomes second nature after a few iterations of de-

signing, developing and supporting it.

Dynamic Type APIs

Dynamic Type is primarily driven through two things:

1. Text Styles

40

2. UIFontMetrics

We’ll look at the technical side of both of these below. For now, it helps to understand

that text styles describe the purpose of the text you want to use rather than a specific

point size. If you’re familiar with the semantic color APIs to support Dark Mode which

rolled out with iOS 13, the idea is the same. It’s less about saying “I want 24 point text”

and instead thinking about the text’s purpose. For example, “This text should repre-

sent a headline.”

This helps from an implementation standpoint, too, because you’re less inclined to

find a perfect font size and instead focus on the purpose of the text. Thankfully, iOS

has text styles to meet virtually every need:

// UIKit

extension UIFont.TextStyle {

 @available(iOS 11.0, *)

 public static let largeTitle: UIFont.TextStyle

 @available(iOS 9.0, *)

 public static let title1: UIFont.TextStyle

 @available(iOS 9.0, *)

 public static let title2: UIFont.TextStyle

 @available(iOS 9.0, *)

 public static let title3: UIFont.TextStyle

 @available(iOS 7.0, *)

 public static let headline: UIFont.TextStyle

 @available(iOS 7.0, *)

 public static let subheadline: UIFont.TextStyle

 @available(iOS 7.0, *)

41

 public static let body: UIFont.TextStyle

 @available(iOS 9.0, *)

 public static let callout: UIFont.TextStyle

 @available(iOS 7.0, *)

 public static let footnote: UIFont.TextStyle

 @available(iOS 7.0, *)

 public static let caption1: UIFont.TextStyle

 @available(iOS 7.0, *)

 public static let caption2: UIFont.TextStyle

}

// SwiftUI

public enum TextStyle : CaseIterable {

 /// The font style for large titles.

 case largeTitle

 /// The font used for first level hierarchical headings.

 case title

 /// The font used for second level hierarchical headings.

 @available(iOS 14.0, macOS 11.0, tvOS 14.0, watchOS 7.0, *)

 case title2

 /// The font used for third level hierarchical headings.

 @available(iOS 14.0, macOS 11.0, tvOS 14.0, watchOS 7.0, *)

 case title3

 /// The font used for headings.

 case headline

 /// The font used for subheadings.

 case subheadline

 /// The font used for body text.

 case body

 /// The font used for callouts.

 case callout

 /// The font used in footnotes.

 case footnote

 /// The font used for standard captions.

 case caption

42

 /// The font used for alternate captions.

 @available(iOS 14.0, macOS 11.0, tvOS 14.0, watchOS 7.0, *)

 case caption2

 /// A collection of all values of this type.

 public static var allCases: [Font.TextStyle]

}

However, you may find the need to scale glyphs or other interface elements in your

app alongside text. Or, perhaps you’re using a custom font. For these cases, UIFont-

Metrics can vend a meaningful and adaptable size to scale effectively anything.

Now, let’s get into implementation details.

How it Works

UIKit Support

To enable dynamic type in UIKit’s three main text controls (UILabel, UITextView

and UITextField) you need to do two things:

1. Set adjustsFontForContentSizeCategory to true. This property sig-

nals to the control that it should adjust its font according to the user’s con-

tent size preferences.

2. Assign a font vended from a text style using UIFont.preferred-

Font(forTextStyle:).

Note that if you only did step two, you would kind of have dynamic type support. The

system would vend the right font size at the time it was invoked, but it would not ad-

just thereafter should the user change their font size on the fly.

Here is an example with two labels. The first one fully supports Dynamic Type,

while the second does not:

43

// UIKit -> Xcode -> DynamicTypeFig1ViewController.swift

let dynamicLabel = UILabel(frame: .zero)

dynamicLabel.numberOfLines = 0

dynamicLabel.text = "Responds to Dynamic Type"

// Dynamic Type support is here

dynamicLabel.adjustsFontForContentSizeCategory = true

dynamicLabel.font = UIFont.preferredFont(forTextStyle: .body)

let nonDynamicLabel = UILabel(frame: .zero)

nonDynamicLabel.numberOfLines = 0

nonDynamicLabel.text = "Doesn't respond to Dynamic Type"

 

Fonts on iOS are immutable. When the content size category changes, a new instance

of the correct font is assigned to the text control as opposed to mutating the instance

already present. This might lead you to ask, “When does the change actually occur?”

From a user’s perspective, the change happens when they edit their font size

choice. From a system level, this is represented as a content size preference. This

44

could happen within iOS’ Settings app, or via Control Center and the Dynamic Type

shortcut found there:

 
Users can change their content size preferences easily in iOS, so your apps needs to

be ready to adjust on the fly.

In code, that means you’ve got two avenues to go down to intercept these changes, or

otherwise handle them:

1. By overriding traitCollectionDidChange(_ previousTraitCol-

lection: UITraitCollection?)

2. By observing UIContentSizeCategory.didChangeNotification

By overriding the UITraitCollection function at the view controller level, you get a

few benefits. One is that you are passed the previous trait collection, which can be

beneficial should you need to apply any application logic based off of what was show-

45

ing before the change occurred. You can see what the content size is now, and what it

was prior to the update trivially:

// UIKit -> Xcode -> DynamicTypeFig1ViewController.swift

override func traitCollectionDidChange(_ previousTraitCollection:

UITraitCollection?) {

 super.traitCollectionDidChange(previousTraitCollection)

 print("Changed from \(String(describing:

previousTraitCollection?.preferredContentSizeCategory)) to

\(traitCollection.preferredContentSizeCategory)")

}

However, this method won’t be much use in SwiftUI unless your View is housed in a

hosting controller via UIHostingController.

Using the didChangeNotification, you can leverage Combine to be alerted to

changes (or the classic way of observing notifications if you prefer):

// UIKit -> Xcode -> DynamicTypeFig1ViewController.swift

NotificationCenter.default

 .publisher(for: UIContentSizeCategory.didChangeNotification)

 .compactMap{ $0.userInfo?

[UIContentSizeCategory.newValueUserInfoKey] }

 .sink { newValue in

 print("Changed content size to: \(newValue)")

 }

 .store(in: &subs)

This method is perfectly fine to use in SwiftUI, but note that you no longer are getting

the previous trait collection value. If you still needed that due to your application log-

ic, adding a local variable to track it is the way to go. However, if you only need to

know the Dynamic Type size, there is an environment variable just for that:

46

@Environment(\.dynamicTypeSize) var dynamicTypeSize

Both are viable options, but you’ll likely make your choice on which to use by assess-

ing the needs of your app’s current architecture. Some lend themselves well to a Com-

bine pipeline, others would be better served by simply responding to things in a trait

collection override. Remember, both of these methods are places to apply logic to

things other than your text size, which should already be handled via Dynamic Type

support.

UIFontMetrics

I recommend most apps stick to the system font. It scales great, looks phenomenal

and has Dynamic Type support right out of the box. But, there are times when you

have to use a custom font. Or, what about icons or glyphs that should scale along with

text size as well? It’s not just fonts we have to consider with Dynamic Type support, it’s

our interface holistically that should respond and adapt to content size preferences.

For these cases, we’ve got UIFontMetrics. By giving it a baseline font from

which to scale by, it can then vend a variant of a custom font scaled according to the

font passed in. For example, UIKit supplies several static sizes of a label that you could

scale a custom font from:

extension UIFont {

 open class var labelFontSize: CGFloat { get }

 open class var buttonFontSize: CGFloat { get }

 open class var smallSystemFontSize: CGFloat { get }

 open class var systemFontSize: CGFloat { get }

}

So, if you had a basic label, you could dynamically scale its size by labelFontSize:

47

// UIKit -> Xcode -> DynamicTypeFig2ViewController.swift

override func viewDidLoad() {

 super.viewDidLoad()

 let customFontLabel = UILabel(frame: .zero)

 // The font we want to scale using

 // UIFont.labelFontSize

 guard let customFont = UIFont(name: "alarmclock", size:

UIFont.labelFontSize) else {

 fatalError("Couldn't find custom font alarmclock")

 }

 // UIFontMetrics.default then scales the font

 customFontLabel.font = UIFontMetrics.default.scaledFont(for:

customFont)

 customFontLabel.adjustsFontForContentSizeCategory = true

 customFontLabel.text = "Custom font that scales."

}

If you run this sample and the content size preferences change, it now scales along

with it.

More commonly, though, is to use text styles. The process then looks like this:

1. Figure out which text style to scale the text control with.

2. Initialize a UIFontMetrics object with it.

3. Then assign the font vended from it via scaledFont(for font: UI-

Font) -> UIFont

// UIKit -> Xcode -> DynamicTypeFig2ViewController.swift

let customFontTextStyleLabel = UILabel(frame: .zero)

let metrics = UIFontMetrics(forTextStyle: .body)

customFontTextStyleLabel.font = metrics.scaledFont(for: customFont)

48

customFontTextStyleLabel.adjustsFontForContentSizeCategory = true

customFontTextStyleLabel.text = "Custom font from text style."

This code sample and the one before are functionally equivalent. The default prop-

erty from UIFontMetrics returns a text style of body by default. However, if you

need something larger, such as headline, you’d pass it in when initializing the met-

rics object.

However, UIFontMetrics can used outside of fonts, too. For most images that

use vector data, adjustsImageSizeForAccessibilityContentSizeCategory

(discussed in depth in the “Image Adjustments” chapter) will take care of things. But

what about arbitrary controls we make ourselves? For these, we can leverage the met-

ric’s ability to return a scaled font from any CGFloat value.

By doing so, you can get an effect like this when the content size is changed:

49

 
Fonts are not the only way to use these APIs, any controls can scale as well.

In my own apps, where controls need to dynamically resize like this, I typically create

an enum to represent how the pieces of it should be calculated according to content

size preferences:

// UIKit -> Xcode -> DynamicTypeFig3ViewController.swift

enum ScaleElement {

 case borderWidth, cornerRadius, controlWidth, controlHeight

 func scaledElementSize() -> CGFloat {

 switch self {

 case .borderWidth:

 return UIFontMetrics.default.scaledValue(for: 2)

 case .cornerRadius:

 return UIFontMetrics.default.scaledValue(for: 8)

 case .controlWidth:

 return UIFontMetrics.default.scaledValue(for: 120)

 case .controlHeight:

 return UIFontMetrics.default.scaledValue(for: 52)

50

 }

 }

}

And then, you can set them accordingly in their initializer:

// UIKit -> Xcode -> DynamicTypeFig3ViewController.swift ->

ScaledControl.swift

override init(frame: CGRect) {

 super.init(frame: frame)

 clipsToBounds = true

 // Dynamic corner radius and border width

 layer.cornerRadius =

ScaleElement.cornerRadius.scaledElementSize()

 layer.borderWidth = ScaleElement.borderWidth.scaledElementSize()

 layer.borderColor = UIColor.systemFill.cgColor

 backgroundColor = .systemBackground

 addSubview(textLabel)

 textLabel.centerXAnchor.constraint(equalTo:

centerXAnchor).isActive = true

 textLabel.centerYAnchor.constraint(equalTo:

centerYAnchor).isActive = true

 // Dynamic width and height

 widthConstraint = widthAnchor.constraint(equalToConstant:

ScaleElement.controlWidth.scaledElementSize())

 heightConstraint = heightAnchor.constraint(equalToConstant:

ScaleElement.controlHeight.scaledElementSize())

 widthConstraint.isActive = true

 heightConstraint.isActive = true

}

51

Whenever the control is presented, you get a size based off of the Dynamic Type set-

tings. However, the code above is similar to attempting to support Dynamic Type in a

text control and doing this:

myLabel.font = UIFont.preferredFont(forTextStyle: .body)

Can you spot the error? We didn’t set adjustsFontForContentSizeCategory in

the label. This means when the control is loaded, it will initially be correctly sized. But,

if the Dynamic Type size is changed, it wouldn’t reflect the correct size until it was re-

allocated and presented once more. That’s not what we’re going for, especially since

the API itself is named Dynamic Type, our views and controls should be dynamic too.

Solving it requires taking one of the approaches mentioned above to intercept

these changes. In our case, we’ll use Combine:

// UIKit -> Xcode -> DynamicTypeFig3ViewController.swift ->

ScaledControl.swift

// Continued in the initializer...

NotificationCenter.default

 .publisher(for: UIContentSizeCategory.didChangeNotification)

 .compactMap{ $0.userInfo?

[UIContentSizeCategory.newValueUserInfoKey] }

 .sink { [weak self] newValue in

 guard let self = self else { return }

 // Apply the new dynamic sizing

 self.widthConstraint.constant =

ScaleElement.controlWidth.scaledElementSize()

 self.heightConstraint.constant =

ScaleElement.controlHeight.scaledElementSize()

 self.layer.borderWidth =

ScaleElement.borderWidth.scaledElementSize()

 self.layer.cornerRadius =

ScaleElement.cornerRadius.scaledElementSize()

 }

52

 .store(in: &subs)

Now, the control resizes alongside any content size preference changes. If you run this

sample code, you’ll notice how each aspect of the control resizes along with the con-

tent size preference changes. The border, size and font all adapt.

SwiftUI Support

SwiftUI supports text styles the same way that UIKit does. Though, it is a bit easier

from an implementation standpoint. In fact, SwiftUI will support Dynamic Type out of

the box given any text control when a font with a specific size isn’t used:

// SwiftUI -> Xcode -> DynamicTypeFig1View.swift

// Responds to content size changes automatically

Text("Dynamic Type")

There is no boolean property or font style to specify to opt-in. However, if you were to

provide a specific font size, the font is guaranteed to stay at that size and will not re-

spect Dynamic Type settings:

// Stays at 10 points no matter the content size change

Text("System Font: Size 10")

 .font(.system(size: 10))

Text styles can be applied to the font modifier as well. This is likely the method you’re

after for the majority of your text controls. Staying close to Apple’s text styles ensures

your designs flows with the rest of the system, and many other apps, as well:

// SwiftUI -> Xcode -> DynamicTypeFig1View.swift

Text("Text Style: Headline")

 .font(.headline)

53

If you require custom fonts, they are supported in SwiftUI too. In fact, the API is even

simpler than UIKit. To get the same effect as UIFontMetrics would bring, simply use

the modifier which takes in a custom font name, base size and a text style to scale it

against:

public static func custom(_ name: String, size: CGFloat, relativeTo

textStyle: Font.TextStyle) -> Font

To match our example from UIKit from earlier, it would look like this:

// SwiftUI -> Xcode -> DynamicTypeFig1View.swift

Text("Custom Scaled")

 .font(.custom("alarmclock",

 size: UIFont.labelFontSize,

 relativeTo: .body))

Tips

Use Extensions to Simplify Dynamic Type Support in UIKit

While supporting Dynamic Type does not require much setup, I find small utility

extensions make it a bit easier:

// UIKit -> Xcode -> DynamicTypeFig3ViewController.swift

func supportingDynamicType(withTextStyle textStyle:UIFont.TextStyle

= .body) {

 self.numberOfLines = 0

 self.adjustsFontForContentSizeCategory = true

 self.font = UIFont.preferredFont(forTextStyle: textStyle)

}

// At the call site

let testLabel = UILabel(frame: .zero)

54

testLabel.supportingDynamicType()

Of, if you prefer inline chaining as a coding style, you can return the instance itself:

func supportingDynamicType(withTextStyle textStyle:UIFont.TextStyle

= .body) -> UILabel {

 self.numberOfLines = 0

 self.adjustsFontForContentSizeCategory = true

 self.font = UIFont.preferredFont(forTextStyle: textStyle)

 return self

}

let testLabel = UILabel(frame: .zero)

 .supportingDynamicType()

 .someOtherFunction()

Think about Dynamic Type Early

Dynamic Type support is going to painful and problematic for apps that are ma-

ture and are just now thinking about it. Even so, the effort is worth it. However, if you

have the luxury of designing a new feature or perhaps starting on a new app altogeth-

er, thinking about Dynamic Type now will help you going forward.

Dynamic Type is unique in that it fills many roles in modern software engineering:

1. It’s a design consideration: Your font size is not guaranteed, and you

have to design accordingly. Accounting for an interaction with 12 point

text versus 24 point text is different, and so too are the designs to accom-

modate each. By thinking about Dynamic Type at this stage, you start to

grow a new design muscle which is more resistant to the pitfalls of variable

text sizes.

2. It’s an accessibility necessity: Much like VoiceOver users simply cannot

continue in some places of your app if you don’t implement an escape

55

gesture, many people cannot read text in your app if their content size

preferences are ignored. It’s another door shut for a potential user. A best-

in-class iOS app is designed for everyone, and Dynamic Type support cov-

ers a large base of that “everyone” cohort.

3. It’s an engineering consideration: No matter how your app is architect-

ed, there will be some thought required to make sure Dynamic Type works

well. For example, views that were never meant to scroll will now need to

when the Dynamic Type size is cranked up all the way. Constraints that

were static have to be dynamic. A simple container view should probably

be a stack view. A view that didn’t scroll now might require it.

As you can see, Dynamic Type is a team effort and will require input from several folks

across all disciplines.

Custom Font Weights and Dynamic Type in UIKit

The Dynamic Type API does a great job of vending fonts at variable sizes to meet

user’s needs, but it’s also opinionated when it comes to font weights. Since the text

styles convey a semantic meaning to each font, it stands to reason that a particular

font weight is applied to each one as well.

For example, a headline font should be heavier than a caption style. And, so it is

when using them in your code and interface:

// This is heavier...

UIFont.preferredFont(forTextStyle: .headline)

// Than this

UIFont.preferredFont(forTextStyle: .caption1)

However, there are times when you want to leverage the ease of Dynamic Type but

apply a different font weight. For these cases, a simple subclass can get the job done:

56

// UIKit -> Xcode -> DynamicTypeFig4ViewController.swift

class CustomWeightLabel: UILabel {

 private let fontWeight: UIFont.Weight

 private let textStyle: UIFont.TextStyle

 private var contentSizeSub: [AnyCancellable] = []

 init(withWeight weight:UIFont.Weight, textStyle:

UIFont.TextStyle) {

 self.fontWeight = weight

 self.textStyle = textStyle

 super.init(frame: .zero)

 NotificationCenter.default

 .publisher(for:

UIContentSizeCategory.didChangeNotification)

 .compactMap{ $0.userInfo?

[UIContentSizeCategory.newValueUserInfoKey] }

 .sink { [weak self] newValue in

 guard let self = self else { return }

 self.configureFont()

 }

 .store(in: &contentSizeSub)

 configureFont()

 }

 required init?(coder: NSCoder) {

 fatalError("init(coder:) has not been implemented")

 }

 private func configureFont() {

 let scaledFontSize = UIFont.preferredFont(forTextStyle:

textStyle).pointSize

 font = UIFont.systemFont(ofSize: scaledFontSize, weight:

fontWeight)

 }

}

57

The trick is to get the point size of the text style using the Dynamic Type API, and then

use UIFont. systemFont(ofSize: weight:) to get a new font with the font size

that you want while retaining the size of the text that the user needs.

Using Combine, listening for content size changes mean you get the “dynamic”

part too, which is important. If the user changes their text size on the fly, your text con-

trol will adapt as well. In the sample code directory, if you run DynamicType-

Fig4ViewController.swift you’ll see that not only can you use different text

styles with whatever font weight you wish, but they’ll change on the fly when you ad-

just font sizes:

 

I’ve also included some print statements so you can see what’s occurring to support

this behavior. For example, you’ll notice the delta between the font sizes stays consis-

tent across differing content size preference changes:

// Default size

58

Applying 12.0 to text style UIFontTextStyle(_rawValue:

UICTFontTextStyleCaption1)

Applying 17.0 to text style UIFontTextStyle(_rawValue:

UICTFontTextStyleHeadline)

Applying 15.0 to text style UIFontTextStyle(_rawValue:

UICTFontTextStyleSubhead)

// Accessibility Large

Applying 32.0 to text style UIFontTextStyle(_rawValue:

UICTFontTextStyleCaption1)

Applying 40.0 to text style UIFontTextStyle(_rawValue:

UICTFontTextStyleHeadline)

Applying 36.0 to text style UIFontTextStyle(_rawValue:

UICTFontTextStyleSubhead)

// Extra Large

Applying 43.0 to text style UIFontTextStyle(_rawValue:

UICTFontTextStyleCaption1)

Applying 53.0 to text style UIFontTextStyle(_rawValue:

UICTFontTextStyleHeadline)

Applying 49.0 to text style UIFontTextStyle(_rawValue:

UICTFontTextStyleSubhead)

// Down to the smallest size

Applying 12.0 to text style UIFontTextStyle(_rawValue:

UICTFontTextStyleCaption1)

Applying 17.0 to text style UIFontTextStyle(_rawValue:

UICTFontTextStyleHeadline)

Applying 15.0 to text style UIFontTextStyle(_rawValue:

UICTFontTextStyleSubhead)

In SwiftUI, you can get this same behavior if you don’t apply a specific font size but do

request a particular weight using the fontWeight(_:) modifier. When it comes to

Dynamic Type flexibility, SwiftUI makes it much easier:

// Still adapts to dynamic type

// You can stil request a text style *and* a font weight

// And it'll respond to content size changes

59

Text("Dynamic Type")

 .font(.body)

 .fontWeight(.thin)

Flipping Interface Axis

With Dynamic Type, you’re all but guaranteed to face an interface that cannot fit

the text within a horizontal axis. For example, consider the interface in the Settings

app which features horizontally placed elements in each row:

 

Now, let’s see how it fares under the largest accessibility text size:

60

 

To follow the same interface pattern, there are two common approaches you can use.

Commonly, you’ll use them together:

1. Use a UIStackView in UIKit that flips its axis under large content sizes, or

switch between a HStack and VStack in SwiftUI.

2. House interfaces in a UIScrollView in UIKit or a ScrollView in SwiftUI

to discourage any text, or other interface elements, from clipping.

In UIKit, we can take the same approach as we did above to build a stack view which

changes its axis. Instead of looking at text styles, it’s a matter of seeing our applica-

tion’s content size preferences have crossed over into an “accessibility size”:

// UIKit -> Xcode -> DynamicTypeFig5ViewController.swift

class AdaptableStackView: UIStackView {

 private var contentSizeSub: [AnyCancellable] = []

61

 override init(frame: CGRect) {

 super.init(frame: frame)

 NotificationCenter.default

 .publisher(for:

UIContentSizeCategory.didChangeNotification)

 .compactMap{ $0.userInfo?

[UIContentSizeCategory.newValueUserInfoKey] }

 .sink { [weak self] newValue in

 guard let self = self else { return }

 self.adjustAxisIfNeeded()

 }

 .store(in: &contentSizeSub)

 }

 required init(coder: NSCoder) {

 fatalError("init(coder:) has not been implemented")

 }

 private func adjustAxisIfNeeded() {

 let isAccessibilitySize =

UIApplication.shared.preferredContentSizeCategory.isAccessibilityCat

egory

 if isAccessibilitySize && axis != .vertical {

 axis = .vertical

 alignment = .fill

 } else if axis != .horizontal {

 axis = .horizontal

 alignment = .firstBaseline

 }

 }

}

Using this approach, our stack view remains on the horizontal axis when the content

size preference isn’t an accessibility size, but then it flips to vertical automatically when

it is. To check when to perform a change, UIContentSizeCategory has a handy

boolean property which will tell us exactly when an accessibility size is active:

62

UIApplication.shared.preferredContentSizeCategory.isAccessi-

bilityCategory

Note that if you’re doing this at a view controller level, you can query the trait col-

lection’s content size category to do the same check:

// UIKit -> Xcode -> DynamicTypeFig5ViewController.swift

override func traitCollectionDidChange(_ previousTraitCollection:

UITraitCollection?) {

 super.traitCollectionDidChange(previousTraitCollection)

 let isAccessibilitySize =

traitCollection.preferredContentSizeCategory.isAccessibilityCategory

}

Though, this could report a different preference than the one UIApplication will

have since trait collections can be override.

In SwiftUI, we can support a dynamically changing stack using its @Environment

property wrapper to listen for changes:

// SwiftUI -> Xcode -> DynamicTypeFig2View.swift

struct AdaptableStack<StackBody: View>: View {

 @Environment(\.sizeCategory) var contentSizeCategory

 let stackBody: StackBody

 init(@ViewBuilder stackBody: @escaping () -> StackBody) {

 self.stackBody = stackBody()

 }

 var body: some View {

 if contentSizeCategory.isAccessibilityCategory {

 VStack { self.stackBody }

 } else {

 HStack { self.stackBody }

 }

 }

63

}

// Used in a view...

struct DynamicTypeFig2View: View {

 var body: some View {

 AdaptableStack {

 Text("Here is some content!")

 Text("And here is some more!")

 }

 }

}

Embedding content in a scrollview can be more challenging, and the best approach

will vary according to the state of your architecture. In the past, I’ve used several ap-

proaches from inheritance in UIKit at the controller level, to a custom control itself

which manages the scroll view and other similar approaches.

The main takeaway with scrolling is this: a lot of content that you didn’t expect to

fill a whole entire screen can and will. One common area that I see a lot of app’s miss

is the ubiquitous “About” view. It usually consists of the app’s icon, some metadata

and a blurb about the developer. Views like this might support Dynamic Type, but

when they do - they clip. While it seems to fit with plenty of room at first, a large font

size changes things real quick. In these situations, be sure to embed controls in a

scroll view to allow for the growth of the content and the ability to see it all.

Specifying a Maximum Point Size

While supporting Dynamic Type in all cases is important, there are designs or ex-

periences where you need to define a ceiling. For example, the font size here should

be a .headline style, but it can’t be larger than 40 points. The numbers of such cases

shouldn’t outnumber the amount of times you support Dynamic Type without “limits”,

but they can happen despite our best efforts.

64

In UIKit or SwiftUI, you can mirror the same approach and use some code like this

for either framework:

func adjustFontSize(withMax max:CGFloat, forTextStyle textStyle:

UIFont.TextStyle) -> UIFont {

 let adjustedFont = UIFont.preferredFont(forTextStyle: textStyle)

 let realFontSize = adjustedFont.pointSize

 if realFontSize > max {

 return UIFont.systemFont(ofSize: max)

 } else {

 return adjustedFont

 }

}

Using this, you can vend a font a few different ways:

1. In a view controller, you can respond to the trait collection changing and

then update any text control fonts as needed.

2. Or, in a custom text control, use Combine to listen for the content size pref-

erence changes and use the same approach to change font sizes.

3. In SwiftUI, you can use Combine and the .onReceive(_ : perform:)

modifier to get content size changes and assign to @State variables to

update font sizes.

Along a similar train of thought, you can also declare an upper and lower bound for a

text or font style to use for Dynamic Type. This is useful to keep your text as dynamic

as possible and lean away from designs that say “Keep this at 40 Points” and instead it

changes the dynamic to “Keep this no bigger than .accessibility1 but no smaller

than .large” — and that’s much more ideal for accessibility purposes.

65

In SwiftUI, the font is derived from the range you specify, allowing you to skip the

font definition when you use these ranges. They are applied via the dynamicType-

Size modifier:

// SwiftUI -> Xcode -> DynamicTypeFig3View.swift

struct DynamicTypeFig3View: View {

 var body: some View {

 VStack {

 Text("No smaller than accessibility1")

 .dynamicTypeSize(.accessibility1...)

 Text("No bigger than Large.")

 .dynamicTypeSize(...DynamicTypeSize.large)

 Text("No smaller than large but no bigger than

xxLarge.")

 .dynamicTypeSize(.large...)

 .dynamicTypeSize(...DynamicTypeSize.xxLarge)

 }

 }

}

In UIKit, it works a bit differently. You still need to apply a font and opt a text control

into Dynamic Type — but then the ranges will kick in from there:

// UIKit -> Xcode -> DynamicTypeFig6ViewController.swift

class DynamicTypeFig6ViewController: BaseSampleViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 let stack = UIStackView()

 stack.axis = .vertical

 let label1 = UILabel(frame: .zero)

 label1.font = UIFont.preferredFont(forTextStyle: .callout)

 label1.adjustsFontForContentSizeCategory = true

66

 label1.text = "No smaller than accessibilityLarge"

 label1.minimumContentSizeCategory = .accessibilityLarge

 label1.numberOfLines = 0

 let label2 = UILabel(frame: .zero)

 label2.font =

UIFont.preferredFont(forTextStyle: .largeTitle)

 label2.adjustsFontForContentSizeCategory = true

 label2.text = "No bigger than Large."

 label2.maximumContentSizeCategory = .large

 label2.numberOfLines = 0

 let label3 = UILabel(frame: .zero)

 label2.font = UIFont.preferredFont(forTextStyle: .headline)

 label3.adjustsFontForContentSizeCategory = true

 label3.text = "No smaller than large but no bigger than

xxLarge."

 label3.minimumContentSizeCategory = .large

 label3.maximumContentSizeCategory = .extraExtraLarge

 label3.numberOfLines = 0

 stack.addArrangedSubview(label1)

 stack.addArrangedSubview(label2)

 stack.addArrangedSubview(label3)

 view.addSubview(stack)

 stack.frame =

view.safeAreaLayoutGuide.layoutFrame.insetBy(dx: 2.0, dy: 2.0)

 }

}

These properties are available at the UIView level, which means you could (in this ex-

ample) set the ranges on the stack view instead of each label assuming that the re-

quirements were all the same:

stack.minimumContentSizeCategory = .large

67

Even so, you could still have different ranges used in each label and those would still

take precedence over the range you applied to the parent view, making it a flexible

API.

If you get stuck deep in a view hierarchy with multiple ranges set, you can also

leverage the string property appliedContentSizeCategoryLimitsDescription

to get a nice readout of all of the ranges currently set. It would look, in our example,

like this if we used it for label3:

 3. <UIView:0x13b112930>: L <= (none->)L <= XXL

 2. <UIStackView:0x138f20310>: L <= (L->)L <= XXL

 1. <UILabel:0x138f23540>: L <= (L->)L <= XXL

--> L

No matter the method, be sure to allow the largest font size possible.

Efficient Testing

Testing Dynamic Type is paramount to ensuring a great experience. Thankfully,

Xcode and iOS itself make the process straightforward and there are a number of

ways to do it whether you are running on device or using the simulator.

No matter which of the following methods you use, it helps to follow a “Lower

Bound Upper Bound” rule. That is, test your app with a very small Dynamic Type set-

ting, and then test with the largest option. If your app handles both gracefully, any-

thing in the middle will do just fine as well.

68

 
When your app can handle the smallest and largest sizes, anything within that spec-

trum will likely display just fine.

Use Simulator Overrides

Starting with iOS 13 and the introduction of Dark Mode, Xcode included a way to

tweak certain trait environment variables on the fly:

69

 

When your app is running, you can use this to change the Dynamic Type settings as

you see fit.

Add Text Preferences to Control Center

You can also add a Dynamic Type setting to Control Center. Navigate to the Settings

app -> Control Center -> Text Size. Now you can swipe down from the top right at any

point to change Dynamic Type settings. This is a common way for iOS users to change

font size, and it’s a big reason why you should focus on the “dynamic” part of the API

as we’ve discussed in this chapter. If a user changes their font size and it’s not reflect-

ed immediately in your app until the view is reloaded, that’s a problem.

This method is also great to get some inspiration from other apps. Survey how

they handle similar interfaces such as your own with Dynamic Type. How do they look

with it turned all the way down or up? Apple leads the way here, and if you find your-

70

self “stuck” design wise with Dynamic Type, visiting one of their stock apps is usually a

good place to start.

Xcode Previews

Using Xcode Previews and its PreviewProvider protocol, we can have a SwiftUI

view display at all Dynamic Type sizes as expressed by its corresponding Content-

SizeCategory:

// UIKit -> Xcode -> DynamicTypeFig2.view

struct DynamicTypeFig2View_Previews: PreviewProvider {

 static var previews: some View {

 ForEach(ContentSizeCategory.allCases, id: \.self)

{ contentSize in

 DynamicTypeFig2View()

 .previewLayout(.sizeThatFits)

 .previewDisplayName("\(contentSize)")

 .environment(\.sizeCategory, contentSize)

 }

 }

}

Using our AdaptableStack we created earlier, we can now see what all of the Dy-

namic Type sizes will display as and see that our stack turns to using a horizontal axis

when an accessibility size is used:

71

 

72

Three Key Takeaways

1. Dynamic Type is one of the most important accessibility APIs in the iOS

ecosystem, it’s critical to support.

2. Doing so requires a team wide effort, but thinking about it upfront can

make the process easier.

3. Fortunately, there are several APIs to help you support Dynamic Type and

just as many ways to test it.

The Fidelity Problem
At this stage of designing an iOS app, you’re at a crossroads. Do you invest in making

a pixel accurate high-fidelity design in Sketch, Figma or something similar? Or, do you

continue with what you have up to this point and move forward?

I call this the fidelity problem, and I’ve lived on both sides of it. How do you figure

out which way to go? As we spoke about in the last chapter, gaining momentum and

capturing it is critical. As such, do you invest the time into a high fidelity design, or do

you find it as you go?

Whichever path you choose, it’s mostly a matter of figuring out when you want to

pay that time investment. Upfront, or later on? Going high fidelity takes a bit longer to

move forward, but once you have it — it’s incredibly useful. You pay the cost upfront.

Going low fidelity means you fire up Xcode quicker, but you have to answer questions

along the way which can be time consuming.

73

For many, you likely already know which you prefer. For example, I tend to fall on

the “find it in code” method — wherein I take the wireframe sketch we created from the

last chapter and start tweaking things from there. If I do use Sketch or Figma, I make a

“low fidelity” version of the wireframe. It sounds odd, but it’s basically a low fidelity

version of a high fidelity design technique — but it works for me because it answers

just enough (colors, font size, etc.) for me to keep moving.

Others I know create a fully realized document of the design, complete with color

palettes, buttons for just about any scenario and more. They might even have a design

system in place. They’ve thought through the entirety of the app, top to bottom.

Of course, neither approach is wrong. It’s about opening your eyes to both of

them, though, and figuring out a way forward. A lot of times, we lean on our strengths

at this point, too. Developers tend to dive right into code, whereas a designer at heart

relishes the chance to create a high fidelity vision of the app before ever opening

Xcode.

To help you make a decision, let’s take a look at both approaches and uncover

some pros and cons they carry with them. Keep an open mind here, as these are pros

and cons as I have seen them. Depending on your personality or skills, you may have

this list reversed. The point, of course, is that you think critically about them. Then, you

can be realistic about either approach being a good one for you and your team.

Going High Fidelity

The allure of going high fidelity is obvious. A shiny, pixel perfect canvas laying out

what to do, and where. I’ve worked with these in the past, and they are amazing to

have around.

For the uninitiated, they look something like this:

74

 
A high fidelity design file in Sketch, showing all of the app's functionality.

For our purposes, I’m defining high fidelity designs as a document that has every flow,

screen, button, color, copy and pretty much anything else defined and designed.

Pros

Less Guessing

This is probably the biggest benefit I’ve seen from high fidelity designs. A design-

er, or you, has already thought through some of the difficult questions that have come

up during the design phase.

Flows are figured out, where a button goes (and when it goes there, if the design

is a functional prototype) or how the text fits into this area or that area has been ad-

75

dressed. That’s great, because those things are faster to figure out in a program built

for design than it typically is to figure out in code (regardless of if you’re using SwiftUI

or UIKit).

 

When you have less guessing to do, it frees you up a bit more to get going on the

code.

Faster Implementation

A high fidelity design is, in many ways, like a blueprint for developers. It tells them

what to make. As such, it’s a lot easier to reason about technical questions, too.

Programming, no matter how you architect anything, is never simple. It just isn’t.

Programming is hard, and it requires a lot of patience and thought — so any upper

hand you can give yourself when you do it is a huge plus. That’s what these designs

can give you. When you have to work your left brain and right brain at the same time,

it can be draining.

76

By virtue of the simple fact of knowing what you’re building, how it looks, where a

user goes when they tap X or Y — you can program for it easier.

Components are Predefined

If you utilize any sort of design system, a lot of components become modular. You

have designs ready to go for buttons, sub types of buttons, colors and more. Using

them, you can build up screens using all of these smaller components to add up to

something bigger. In some communities, this is also called atomic design:

 
An example of atomic design elements, which progressively build up from one another

to create screens in your designs.

This is great, because when a new screen arises (and they will), putting them together

is a little easier. If you already have buttons, their font weights and colors, predefined

— it means designing new screens is more about putting a bunch of individual pieces

together than it is creating something from scratch.

77

Think of it like abstraction for design. Individual pieces and components with a

specialized use case and purpose. When you have that, things like a settings screen

became a fairly trivial affair to pull together.

Cons

Time Investment

High fidelity designs inherently take more time. They are well thought out, typical-

ly have a lot of production value and shoot to be a complete realization of the app.

That’s perfectly fine — but be realistic that if you go this route yourself, you likely to

need to put in a healthy chunk of time to do it right. All good things take time, that’s

no different in software development and design than it is in anything else in life, but if

the time is a worthy investment to you — please go for it!

In fact, I’d argue that if you do well with high fidelity designs, then they should take

quite a bit of time to make. It means you’ve thought about colors, active versus inac-

tive states, flows and more.

Golden Path

One issue I frequently see with high fidelity designs is that they all tend to take a

“golden path” approach. The data input is perfect for the interface, the text fits just

right and the font size is matched up conveniently.

In reality, we know this hardly ever happens.

When making high fidelity designs, account for the real world. And, in the real

world, folks rely on Dynamic Type, may have longer (or shorter!) names, their text my

go right to left and the list goes on. For example, a quick search on the popular design

website Dribbble for iOS designs yields several pretty, but potentially problematic de-

signs for things like varying font sizes:

78

 

So if you see a high fidelity design like this, be sure to account for these things your-

self or if you didn’t make it, challenge the designer to consider these things too. Im-

ages will clip, things have to stack, interface axis often change, dark mode comes into

play, accessibility has to be considered — the list is huge. High fidelity designs with

data are great, but they also can embody the timeless saying of it’s “too good to be

true” because they don’t often reflect the messy world of actual data entry from your

users.

Going Low Fidelity

Pros

Instant Gratification

79

One of my favorite things about going low fidelity design is the instant gratifica-

tion you get. You feel like things are moving and progress is being made. I think this is

the same reason why many developers tend to start their side projects by either buy-

ing a domain name, creating a Github repository for it or making a new Xcode project.

It feels like you’re going somewhere. And going somewhere is always good for a

quick endorphin hit.

If you are the type that is motivated by moving and getting a project installed on

your device right away, this method of design can work great. I personally love it for

that same reason. Though, if you are wired primarily as a designer, it’s also true that

making a high fidelity design would give you much of the same feeling, too.

Design and Implementation are Inherently Married

When you do a lot of designing as you create your app, the two disciplines sort of

become intertwined together. This can be a powerful thing because if you do it right —

you can knock out two Herculean tasks at once: Design, and implementation.

This is one of the biggest draws of SwiftUI, as it aims to eliminate discussions such

as:

- Should I use a storyboard?

- Should I make all of my interface in code?

SwiftUI gives you the best of both worlds. Visual feedback as you code your interface.

Putting code and design close together can be powerful for those who are primarily

programmers. I’ve been creating a lot of interfaces using UIKit programmatically for

many years, and it’s always been my favorite way to design things, too. It clicks with

me more than design programs ever have — but that’s an obvious bias I carry as some-

one who learned to program long before I ever thought about design.

80

Cons

Time Investment Can Be a Gamble

When you create a high fidelity design, you are pretty much signing up for the siz-

able time commitment required to produce a polished canvas full of the app’s many

states.

When you go low fidelity, you aren’t immune from that time sink, either. In some

cases, it can take more time. No matter your development setup, or user interface

framework of choice, you are still bound to a simulator or device to fully realize any

changes you make. With SwiftUI, you feel this burden less since you can sort of “de-

sign while you code” — but no matter, it still means you are putting code to compiler

to figure out how things should look.

This can really take a lot of time, especially if a flow you’re looking to design for is

deep within the user experience of the app. If you’re constantly tapping three buttons

to bring up a screen and are bound to some technical constraints preventing any ob-

vious shortcuts to get there quicker from being put into place, consider mixing things

up with a high fidelity design for such a case.

Lack of References

The thought of having a design system upfront is comforting. All of your questions

are answered! What color this text should have, what the background color of a but-

ton should be — it’s all there. When you do things primarily in code, this isn’t as true.

I’ve found myself referencing code files to figure out what my design system is.

Depending on who you ask, this is either a very lean thing or a very bad idea. I’ve ob-

viously listed this in the “cons” section, so it’s no surprise where I fall on the issue.

If you’re going to do a lot of design in code, make your life a bit easier by setting

up a very loose design system somewhere. You don’t want to have to boot up a simu-

lator or open your app to know what color a section header should be.

81

Going Forward

I find myself doing a mix of both of these methods. For example, when I created

Spend Stack I made a half finished version of it in Sketch. The final product was quite a

bit different than what Sketch had. For me, this was great — the Sketch file served as a

guideline of where I was going and I found the sweet spot during development.

This works for some people. For others, it’s a disaster. You’ve also got to consider

the team aspect, as well. High fidelity approaches are far more common in teams, but

if you aren’t working with others — you’ve got the freedom to figure out which works

best for you.

Either way, I’m better off for having tried both approaches in earnest.

With the advent of SwiftUI, you can make the argument that it’s nearly as fast, or

faster, to create the designs in code. Depending on your skill level, this is a newer, but

viable, approach to take.

As with any advice, do what’s best for you — but stay open minded to all of the ap-

proaches. Perhaps try the one you didn’t think would work for you. You will learn some

things along the way, even if you don’t stick with it going forward, that you can take to

your design flow.

82

The TL;DR

At this point, you may have a fully polished design or you might have a “rough

draft” of it — and either one is fine, depending on how you develop apps.

Finding Your App’s Voice
Tone plays a critical role in your app. It gives the user an expectation of how your app

will work, how it will feel and perhaps who it’s for. Get it wrong, and users might be

off-put or confused. Find the right voice, though, and users will feel connected to your

app and share a sense of agency with it.

When we talk about an app’s voice, we are talking about how the app primarily

chooses to represent itself to the user. Based on that, several user experience and de-

sign choices will follow. An app’s voice represents things like how copy is written, how

vibrant or muted colors may be or how interactive the app feels.

Holistically, it sets a tone for the app. Tone equals voice, and vice-versa.

Design offers several opportunities to break from convention and define new ter-

ritory, but when it comes to your app’s voice — it pays to display consistency. Settle on

what your app’s voice is early on, and go from there.

How Your App’s Voice Shows Up

Be cognizant of the places your app displays any sort of tonality. You may be surprised

at how often you have an opportunity to convey tone. It happens more than you think.

83

For example, look at these two error messages and ask yourself what’s fundamentally

different about them:

 

Functionally, there is no difference. They both display a network error. But yet they feel

miles apart. Why? Their error copy is drastically different. One is silly, one is serious.

They have different voices.

Going away from just copy, consider this next example:

84

 

You get the same vibes as before, don’t you? One feels like all business, while the oth-

er one feels playful and less serious. All that from simply changing colors, font and

some text around.

Neither one is wrong. But they are different. And that difference is important, be-

cause deciding what your app’s voice is drives decisions like these.

Colors. Typography. Copy. Navigation. We like to say these are functions of de-

sign, but I believe they are functions of an app’s voice first. Because once you figure

that out, the design comes next.

Let’s look at some other examples. Buttons are a good one, look closely at the

“Sign Up” buttons below:

85

 

The squared off edges of the first button convey a sense of urgency or seriousness.

The rounded corner radius feels a little less dramatic in the other example. That’s be-

cause tone is commonly bound to interface elements.

The same is true if we switch up the font and keep the colors, copy and other in-

terface parts exactly the same. Here, the left uses a serif font while the right uses the

one:

86

 

It all comes down to your goals, audience and app’s mission statement. That’s where

you find your app’s voice — and that’s also why I recommend you do the things I’ve

said in the order that I’ve said them. Skipping around, for me at least, leads to an unfo-

cused process when it comes to design. But when you know what your app does, and

who it’s for and what that first version looks like — well then, you can settle on its voice.

And that’s the best part, you get to choose it. So, what kinds of voices are out

there? Let’s take a look at some screens within apps that use a certain type of tone.

87

Types of Voices

Casual

Calendar, by Apple, is a casual app used by, quite literally, billions across the globe. It

strikes a casual tone that doesn’t make too many opinions, being approachable to just

about anyone:

 

88

Playful

Honk, by LFE, is an incredibly playful app that invites fun and interactivity. It doesn’t

take itself too serious, but instead tries to enforce its goal of communication and

meeting new friends:

 

Friendly

Apollo , by Christian Selig, strikes an informal and friendly tone. It often refers to its

developer in first person, and makes you feel like the both of you know each other.

89

 

Sarcastic

Carrot, by Grailr LLC, has a unique tone in that it’s configurable by the user. For exam-

ple, users can opt for a sarcastic, insulting tone throughout the app that its titular char-

acter, Carrot, will use when speaking to you:

90

 

Lively

Up ahead, by Daniel Gauithier, uses a blend of bright colors and mono fonts to give

off an energetic, personal feel. Its rounded corners and playful copy promote a loose,

low-stress tone:

91

 

Something Else!

This list isn’t exhaustive, of course, but it is demonstrative. There are lot of different

ways to create a voice for yourself. But it’s important that you decide what yours will

be, and lean into it.

Choosing the Right Voice

Just as different covers of a song have a different feel, so can your app — regardless of

its stated function and purpose. So, how do you know which one is right for you?

92

Making that decision is usually personal if it’s your own app, or maybe it’s been

decided for you in a team setting. Whichever way it’s formed, try your best to stick to

it. You don’t want to have something like this happen:

 

That has two tones competing for attention. The silly error message doesn’t really fit

the formal tone below it. Try to avoid using two different tones.

If you’re in a position to decide, try to derive it from the information you’ve already

discovered about your app. Who is it for? What does it do? And from there, ask your-

self:

- How should it make those people feel when they use my app?

- How do I want them to talk to others about it?

And it’s really as simple as that.

93

Find your app’s voice, and use it right — it can end up being a competitive advan-

tage for you. Maybe there’s a cohort of “all business” apps that you can put a not-as-

serious spin on. Or, maybe the opposite is true. Who knows?

But find a voice you’re excited about, and breath it into all of the other design de-

cisions you make.

94

The TL;DR

Every app has a voice, and the sooner you find yours — the easier it becomes to

make decisions going forward and enforce consistency.

Custom View Controller Transitions
Custom view controllers add that jena se qua to any app. They just do. When done

correctly, they delight and surprise people. When they are gratuitous or implemented

unnecessarily, they get in the way. This chapter goes into what makes a good transi-

tion, when you might look to use them and how to implement one. It also dives into

the how quite a bit, because in this case — the “how” is a bit of sticker.

Please note, this chapter focuses solely on UIKit — this A.P.I. is specific to view

controller paradigms.

To kick off our discussion, what do I mean by a custom view controller transition?

Within UIKit, anytime you present a view controller from another view controller — a

view controller transition is occurring. For the most part, these are modal in nature —

though that’s not always the case when you’re using a navigation controller. In that

scenario, you push a view controller onto the navigation stack, and when you go back,

you pop it off.

For our case, we’re focused on those modal transitions. To see a custom view con-

troller transition, you don’t have to look far within iOS. Perhaps one of the best exam-

ples of them can be found in the Photos app, which has several custom transitions it

95

uses. For example, anytime you tap on a photo to view it, and it expands from where it

was to where it needs to go — that’s a custom transition Apple built:

 

If you visit the App Store app and tap on anything in the “Today” view, again — that’s a

custom transition:

96

 

Further, a lot of these transitions can be interactive, meaning you can control their

progress with a gesture, pause them while they are occurring or cancel them altogeth-

er. Many transitions are start and stop in nature, meaning that a user intends to view

something, the system kicks off the transitions and then it finishes. But others, like the

firstPhotos example, are interruptible and interactive.

While this does add complexity in terms of implementation, there’s no denying

that it simply feels better as a user to know that you’re in control of the process. I’m

sure that, like me, you’ve tapped on a photo within the Photos app that you wanted to

view but accidentally tapped on the wrong one. Maybe you hit the one next to it,

above it — whatever. With their interactive transition, you can simply swipe it back

down before it even finishes to “cancel” the transition. You don’t have to wait for it to

finish — and if you did, those moments that you would spend waiting for something to

complete that was an accident anyways would really add up.

97

Custom transitions work best when people don’t notice them, but at the same

they are also delighted by them. That statement sounds like a contradiction, so allow

me to dig into it a little more because I really believe it encompasses the heart of cus-

tom view controller transitions. In my last app, Spend Stack, I have the ubiquitous “Set-

tings” view. You could open it by tapping this button in the top right:

 

What would you expect to happen? A sheet transition, probably. That’s what occurs in

almost any other app. It’s expected to be modal, after all. Instead, I opted to show a

centered modal that expanded from the middle of the presenting view. Below, there

was a blur view obscuring the presenting controller’s content:

98

 

Why do I think it worked?

Because it was a fun, little transition that didn’t get in the way. It still served the

purpose of a modal transition. It was the same duration as UIKit transitions, so it didn’t

feel any longer because it simply wasn’t any longer. People probably expected the

stock transition, but they got a different one that was just as utilitarian as it was playful.

That’s the sweet spot I think you can hit with custom transitions.

How Transitions Work

UIKit offers several ways to present your view controllers out of the box, and most of

them are achieved by simply assigning a style to their modalPresentationStyle

property:

myViewController.modalPresentationStyle == .fullScreen

99

There are several styles you can choose from, which require no customization at all:

1. automatic: The system will choose the most appropriate presentation

style for you.

2. currentContext: The view controller will be presented over another

view controller’s content whose definesPresentationContext proper-

ty is set to true.

3. none: A style indicating that no other adaptions should occur.

4. fullScreen: This style will cover the entire screen.

5. pageSheet: Likely the style you are most used to, this is the classic “card”

presentation, where it covers most of the presented view controller but not

all of it. You’ll also get the rounded top edges on the presented view.

6. formSheet: A style centering the contents in the middle of the screen.

This style is the same as a page sheet presentation unless you’re in a regu-

lar horizontal and vertical size class (i.e. iPads who aren’t sharing the win-

dow with another app via multitasking). You can also set the size of the pre-

sented controller by overriding preferredContentSize.

7. overFullScreen: Like the full screen presentation, except this style

doesn’t remove the views it’s being presented over. This is a good choice

when you want content underneath to still be visible for stylistic or user ex-

perience purposes.

8. .custom: This indicates you’ve got custom objects in place to create a cus-

tom view controller transition. We’ll be looking more at this in a bit.

If you open the sample project and visit CVCTFig1View.swift, you can demo all of

these yourself to see how they work.

100

In addition to the modal presentation style, there’s also a transition style view con-

trollers can use. These let you perform different effects during the transition, such as a

cross dissolve or the classic “page turn” animation which is perfect for reading apps. If

the modal presentation style is telling the system where to begin and where it should

end up, the transition style tells the system if it should animate any certain way during

the process of getting there. One places a view controller somewhere, one makes

some certain effects or animations during the process.

As such, many of these values can work in tandem with a view controller’s modal

presentation style too, like the partial page curl — which itself requires a full screen

modal presentation style to use at all. Again, try them all out to get a feel for them. I’ve

got them all setup in CVCTFig2View.swift to use. For example, if you want a page

sheet transition, but with a cross dissolve transition style — you can certainly do so.

But in the end — if you want to have full control over all of these things, we need to

create a custom view controller transition. So, let’s dive in there.

How Custom Transitions Work

To understand custom view controller transitions sometimes feels akin to learning

black magic. It’s a little hard and certainly confusing at first but awesome once it all

clicks. So, that said, please give yourself a little grace here and realize that if this is new

to you — you might need to read this section a few times until it all becomes clear.

To wit, I’ve read many documents explaining how transitions work. While many of

them are full of incredible information, there’s no denying that there’s simply a lot of

information, classes, protocols and functions to grasp. My goal is to take a different

approach — I’ll lay out just what you need to know. In our case, that’s a few key objects

101

that drive these transitions. Once you’ve got a handle on those, you’ll know where to

hook into your code to achieve the effects that you’re after.

For context, in the demo project I’ve included a lot of sample code with some in-

depth documentation built right into the user interface. After you’ve read this chapter,

you can open it up and play around with it to strengthen your knowledge of how all of

this works together:

 

I’ve adapted code from an open source project I run that shows these concepts, and

it’s great for going through each part piece by piece. So, please use it! Custom view

controller transitions are definitely a piece of iOS that you’ve got to get hands on with.

Reading about it will help you get a feel over how things are working, but looking at

this code (along with its explanations) is just as much required to learn the API.

The transition that we built (in most cases) in the demo code is simply showing a

view controller that takes up half the screen, and presents from the bottom right of the

102

view. This isn’t a very practical transition, but it gives an opportunity to mess around

with the frame of the transition, dimming views you might want to customize and basi-

cally gives us a reason to touch each piece of the custom transition API.

So with that, let’s look at the objects we may want to make to create a custom tran-

sition.

The Transitioning Delegate (Required)

The transitioning delegate is the “brains” behind custom view controller transitions. It’s

important because it vends a lot of objects to UIKit which drive the whole process. As

such, you typically need a strong reference to this. There are a lot of ways to engineer

this whole process, but for me — I typically put this in the presenting view controller.

private let myCustomTransitioningDelegate = CustomTransition-

Delegate()

This object will conform to the UIViewControllerTransitioningDelegate

protocol, and that’ll provide UIKit an opportunity to use custom transitioning objects

you make. With it, you can vend:

1. Custom animation controllers, which we’ll look at below. Those conform to

UIViewControllerAnimatedTransitioning. These drive any custom

animations you want to make to the presented controller.

2. Interactive animation controllers. These can work with the animation con-

trollers, but here the user is driving the animations via a gesture or some

other means. As such, you provide the progress of the animation.

3. Presentation controllers. Most commonly, these can be used to control

things on the side of the presenting controller. For example, if you all you

103

wanted to do was provide a “dimming” view during a transition, a presen-

tation controller would be a great place to do that.

Most importantly, you set a custom transitioning delegate object to a view controller’s

transitioningDelegate property to let UIKit know you’re providing a custom tran-

sition:

// Xcode -> UIKit -> CVCTFig3ViewController.swift

let vc = createDemoController()

vc.transitioningDelegate = customTransitionDelegate

vc.modalPresentationStyle = .overFullScreen

present(vc, animated: true, completion: nil)

An Animator, Interactive or Not (Optional)

An animator provided by a custom transitioning delegate vends any custom anima-

tions you want the presented view controller to perform. In our case, it’s responsible

for making the presented controller’s view come up from the bottom right of the view.

It adopts UIViewControllerAnimatedTransitioning. It also decides the dura-

tion of the custom transition.

What it does not do is decide where its final frame should end up, which is a com-

mon misconception with animation controllers. That’s handled by a presentation con-

troller, and eventually that information comes down to the animation controllers via

UIViewControllerContextTransitioning.

If your head is starting to spin right now, just a take a beat and think of it like this:

Animation controllers will make a snazzy animations during the presentation and tell

UIKit how long it should take. That’s it.

104

This all occurs in func animateTransition(using transitionContext:

UIViewControllerContextTransitioning), whereas we provide the length of

the transition in via func transitionDuration(using transitionContext:

UIViewControllerContextTransitioning?) -> TimeInterval.

The flow for implementing them usually looks like this:

1. Get the views and container view from the transitioning context.

2. Put them in their “starting” spot.

3. Use UIKit animation APIs to animate those frames however you want.

You can see all of these occurring in the sample code. Here’s step one:

// Xcode -> UIKit -> TransitionAnimator.swift

// Views and controllers

let containerView = transitionContext.containerView

let fromVC = transitionContext.viewController(forKey: .from)

let toVC = transitionContext.viewController(forKey: .to)

let fromView = transitionContext.view(forKey: .from)

let toView = transitionContext.view(forKey: .to)

Then, we put them in our desired starting position:

// Xcode -> UIKit -> TransitionAnimator.swift

if isPresenting {

 toViewBeginningFrame.origin = CGPoint(x:

containerFrame.size.width,

y: containerFrame.size.width)

 toViewBeginningFrame.size = toViewEndingFrame.size

} else {

 fromViewEndingFrame = CGRect(x:containerFrame.size.width,

 y:containerFrame.size.height,

 width:toView?.frame.size.width ??

0,

105

 height:toView?.frame.size.height ??

0)

}

toView?.frame = toViewBeginningFrame

And finally, we animate them in:

UIView.animate(withDuration: transitionDuration(using:

transitionContext), delay: 0.0, usingSpringWithDamping: 0.8,

initialSpringVelocity: 0.9, options: .curveEaseOut) {

 if self.isPresenting {

 toView?.frame = toViewEndingFrame

 fromVC?.view.frame = containerFrame

 } else {

 fromView?.frame = fromViewEndingFrame

 }

} completion: { done in

 let succeeded = !transitionContext.transitionWasCancelled

 let failedPresenting = (self.isPresenting && !succeeded)

 let didDismiss = (!self.isPresenting && succeeded)

 if (failedPresenting || didDismiss) {

 toView?.removeFromSuperview()

 }

 transitionContext.completeTransition(succeeded)

}

As previously mentioned — these can be interactive. The easiest route to get that done

is by using UIKit’s object that handles most of that for you, UIPercentDrivenInter-

activeTransition. Your transitioning delegate is a great spot to put these, and

then later vend during the transition setup:

// Xcode --> UIKit --> TransitionDelegate.swift

func interactionControllerForDismissal(using animator:

UIViewControllerAnimatedTransitioning) ->

106

UIViewControllerInteractiveTransitioning? {

 guard demoedUseCase

== .interactiveAnimatorAndPresentationController

else { return nil }

 return interactiveAnimator

}

With that in place, you can use the animations from the animation controller while

telling UIKit how much of it is completed via a gesture, such as a pan or a drag. We do

this in the presentation controller, which we’ll look at now.

A Presentation Controller (Optional)

The presentation controller can handle, unsurprisingly, anything related to the transi-

tion from the presentingcontroller’s side. It also can provide the final frame that the

presented controller’s view should have. Finally, it’s a great place to respond to

changes in the app’s environment. For example, if you need to react to something like

a size class or trait collection change, the presentation controller can query those val-

ues and adjust frames accordingly.

Going back to our example, if we wanted to provide a dimming view for the tran-

sitions — the presentation controller is where it should happen. To begin with, though,

our transitioning delegate has to provide it — which happens here in the demo

project:

// Xcode -> UIKit -> TransitionDelegate.swift

// MARK: Presentation Controllers

func presentationController(forPresented presented:

UIViewController,

presenting: UIViewController?, source: UIViewController) ->

UIPresentationController? {

 // Truncated for clarity

 TransitionPresentationController(presentedViewController:

107

presented, presenting: presenting)

}

Creating our own, in contrast to previous objects, doesn’t require a protocol but inher-

itance from UIPresentationController. There, we can hook into the presentation

lifecycle to add in our “chrome” to the transition. This is where we add in the custom

dimming view in the demo example:

// Xcode -> UIKit -> TransitionPresentationController.swift

override func presentationTransitionWillBegin() {

 guard let container = containerView else { return }

 dimmingView.frame = container.bounds

 dimmingView.alpha = 0.0

 container.insertSubview(dimmingView, at: 0)

 presentedViewController.transitionCoordinator

.animate(alongsideTransition: { [weak self] context in

 self?.dimmingView.alpha = 1.0

 }, completion: { [weak self] context in

 if context.isCancelled {

 self?.dimmingView.alpha = 0.0

 }

 })

}

The presentation controller also provides the frame we want the presented controller

to end up at. This is where the animation controller will animate it to once the transi-

tion has completed, and it’ll find it in the transitioning context that UIKit will provide.

The code shows how we make the presented controller take up only half of the

screen:

// MARK: Sizing

override var frameOfPresentedViewInContainerView: CGRect {

108

 var presentedViewFrame = CGRect.zero

 guard let containerBounds = containerView?.bounds else

{ return .zero }

 presentedViewFrame.size = CGSize(width:

(containerBounds.size.width/2),

height: containerBounds.size.height)

 presentedViewFrame.origin.x = containerBounds.size.width -

presentedViewFrame.size.width;

 return presentedViewFrame;

}

Remember — these objects are a great spot to handle interactive transitions too. Since

these are nearly always driven via a gesture of some sort — and the presentation con-

troller handles the chrome, it’s a perfect spot to add that gesture to the view hierarchy

and respond to it. That’s exactly what we do once the transition is complete, and we

intend for the user to be able to “swipe to dismiss” the view:

// Xcode -> UIKit -> TransitionPresentationController

override func presentationTransitionDidEnd(_ completed: Bool) {

 guard let container = containerView,

 transitioningDelegateWantsInteractiveDismissal == true,

 let _ = presentedViewController.transitioningDelegate as?

TransitionDelegate else { return }

 // Attach a gesture recognizer to the dimming view to allow for

a swipe

to dismiss

 // Once we've confirmed that our transition delegate wants one

 panGesture = UIPanGestureRecognizer(target: self, action:

#selector(handleSwipeToDismiss(pan:)))

 panGesture?.maximumNumberOfTouches = 1

 container.addGestureRecognizer(panGesture!)

}

109

If you open that file, you’ll also see that at the bottom — we handle the gesture and up-

date the interactive transition’s progress according to how far the user has drug up or

down with their gesture.

To recap, presentation controllers hint at all they should be doing within their

name — they handle the presentation. They don’t control the animations. They can ani-

mate chrome outside of the custom transition, but most of what they are responsible

for is providing a final frame for the transition, and optionally handling any chrome

considerations too.

UIKit Created Objects

There are couple of important objects that UIKit will make on our behalf that we can

use in a few different places. Namely, the transitioning coordinator and the transition-

ing context. Again, we don’t typically have to subclass or otherwise make any of these

ourselves, UIKit is going to hand them off to us when we need them.

UIViewControllerTransitionCoordinator

The transition coordinator will be present on a view controller during any presentation

or dismissal. You can find it on a view controller’stransitionCoordinator property

to use. This object is very handy to customize the transition further, but for tasks that

fall outside of the animator object’s responsibilities.

The reason it’s key to know about is that it works in lockstep with the animator ob-

ject to perform animations within the same animation group as the transition is ani-

mating. That means you don’t have to mess with any of the timing parts yourself, the

system can take care of it.

transitionCoordinator?.animate(alongsideTransition: { context in

 // These animations will happen alongside the transition

110

}, completion: { context in

 // Perform any clean up

})

Transitioning Contexts

You’ll notice that UIKit also passes a context, which is an instance of UIViewCon-

trollerTransitionCoordinatorContext, so you can get critical information

about the transition that is occurring to transition coordinators. This is similar to the

object we use in our animation controllers, which is slightly different in naming — that

one is typed to UIViewControllerContextTransitioning but they do very simi-

lar things. You can see if the animation is done, cancelled, interruptible and more.

You’ll use these transitioning contexts to get information — that’s it. They give you

the container view for animations, the view controllers taking part in it and let you

know what the current state of the transition is.

Kicking off the Transition

This may seem silly, but after all of that information — it’s actually very easy to miss how

exactly we kick off these transitions. That’s done in a two step process:

1. Tell UIKit that your view controller is supplying a custom transition,

myViewController.modalPresentationStyle = .custom.

2. Then, supply your transitioning delegate to vend all of the necessary ob-

jects taking part in it: myViewController.transitioningDelegate =

myCustomTransitioningDelegate.

Then, UIKit will take over and hit all of the objects we’ve been talking about. I’ll cover

this a bit more in the tips section below, but remember — you don’t always need all of

111

these objects. Now that you know what each of them do, start by asking yourself what

exactly you’re trying to achieve with the animation of the transition and work your way

backwards from there to know what you need to use.

The High Level View

I think developers of would-be custom transitions typically struggle with the API be-

cause there are quite a few objects involved. You’ve objects that you yourself make,

ones that UIKit creates and on top of all of that — you only need some of them de-

pending on what you’re doing.

So, again — browse the sample code here, I think that’s critical when it comes to

bringing it all together. To recap, things that we make ourselves:

- Our transitioning delegate object vends other objects to help drive the

transition.

- Our animation objects animate the presented controller’s view however we

wish, and it specifies how long the transition should be.

- Our presentation controller optionally vends custom chrome during the

transition from the presenting controller’s point of view — and it also tells

UIKit where the custom animation’s frame (occurring from the animation

controller) should end up by supplying a CGRect.

And, things UIKit makes for us:

- A transition coordinator can help you animate something alongside the

transition that is about to occur, whether it’s a customized transition or just a

stock one.

112

- The transition context is sent to the animator to give you information about

the views taking place in the transition, and also (by way of the presentation

controller) where they should end up.

Tips

Use Only What You Need

Remember that you don’t need to use all of this API to get a lot out of it. For example,

if all you wanted to do was make your presenting controller’s view have a red back-

ground color during a transition — you don’t have to make a custom transition or pre-

sentation controller at all, you can just reach into the transition coordinator:

// Xcode -> UIKit -> CVCTFig3ViewController.swift

transitionCoordinator?.animate(alongsideTransition: { context in

 self.tv.backgroundColor = .red

}, completion: { context in

 if context.isCancelled {

 self.tv.backgroundColor = .systemGroupedBackground

 } else {

 UIView.animate(withDuration: 0.25, delay: 0.0, options:

.curveEaseOut) {

 self.tv.backgroundColor = .systemGroupedBackground

 } completion: { finished in

 }

 }

})

Similarly, if you want to make the presented controller’s frame do something specific,

then all you really need is the custom transitioning delegate to vend an animation

113

controller that you create. In that case, there’s really no need for the custom presenta-

tion controller here.

All of this demonstrates why you need to know how all of these pieces fit together,

otherwise you’ll end up giving yourself too much work for little payoff by including

pieces which end up being superfluous.

A Little Onboarding Punch

I like to include custom view controller transitions especially in two places:

- Onboarding.

- Or, very early on in the app.

As in my Spend Stack example at the top of the chapter, you’ve got a quick chance to

really “wow” people and show off the care and craftsmanship you’ve put into your

app. But be smart here, when you shoot for these early, you’re in a high payoff and

high risk scenario. If your transition gets in the way or simply feels weighty and “too

much”, then the opposite becomes true — you can lose people early and they may not

come back.

The Bottom Sheet and Detents

Some may reach for a custom view controller transition to present a “bottom sheet”,

that is — a modal presentation that only shows about half way up the screen. UIKit has

support for this out of the box, and you can do it by reaching into its UISheetPre-

sentationController which every view controller has:

// Xcode -> UIKit -> CVCTFig4ViewController.swift

let vc = UIViewController()

vc.view.backgroundColor = .purple

114

if let sheet = vc.sheetPresentationController {

 sheet.detents = detents

}

self.present(vc, animated: true, completion: nil)

Knowing what you know now — it also makes a lot of sense that configuring how high

or low the sheet should go is controlled by this presentation controller, right? Recall

that they can specify the ending frame of the presented controller’s view — and at a

high level that’s all that these detents are doing.

Understanding Full Screen Transition Gotchas

If you opt to use an out of the box UIKit presentation style, you may be confused to

find that the views underneath the presented view controller are removed. This can

lead to odd results, especially if you’re attempting to show some sort of blur view or

one which incorporates transparency. These types of experiences are meant to hint at

the content underneath it.

In these cases, you don’t have to go to the trouble to create a custom view con-

troller transition. Instead, specify UIModalPresentationOverFullScreen as your

modalPresentationStyle — this will leave the view content underneath intact.

What About SwiftUI?

Custom view controller transitions are, naturally, tied to UIKit and its view controller

paradigm. However, what we’re really talking about with these transitions is “Animate

this view I’m looking at now away, and animate this other view in.”

In SwiftUI, you can achieve similar effects by using .matchedGeometryEffect

and hooking two View structs up using a namespace. Remember that SwiftUI is com-

pletely different from UIKit in so many ways, so it helps to remember that presenta-

115

tions are just a different animal altogether. Still, .matchedGeometryEffect is proba-

bly the closet analog to UIKit’s custom view controller transitions.

116

Three Key Takeaways

1. UIKit’s stock presentations are well done and cover several scenarios, so

take time to understand all of the options they provide to you.

2. Figuring out how the A.P.I. fits together is critical, because it can be difficult

to understand at first.

3. Custom view controller transitions can add level of unmatched interactivity

and delight, so look for places where they can add value.

Text that Works
The way you present text can make or break the user experience in your iOS app. Text

that is hard to read, doesn’t respond to accessibility needs, or that clips off important

information is frustrating. Text that responds to accessibility preferences, conveys hier-

archy through its size and weight, and actively responds to its available space is text

that works.

Those aren’t all the things that make text work, but I believe they are the pillars.

Consider this example. One of these interfaces looks elementary in its design and ex-

ecution, and the other is fine, if not unremarkable. The only differences are in how the

text is handled:

117

 

The left side example and its seemingly random font colors are off-putting. The

clipped text means that you can’t even read what the benefits of the app are. Further,

there is no visual hierarchy at all — the “header” here is smaller than the rest of the text.

It’s ugly, hard to read and honestly looks like malware. You’d think this is a con-

trived example and that there is no way something like this would ship. But, if that

were true, this chapter wouldn’t need to exist. Yet, here it is.

Conversely, the right side example doesn’t do much differently, but it also feels

worlds apart. By simply changing text weights, colors and sizes it achieves the mark of

text that works.

This chapter is all about how to make text that works for you, and not against the

people who use your apps. Throughout the years, there are several little nuggets of in-

formation I’ve learned about handling, displaying and adapting text. In no particular

order, I’m going to list out those things in this chapter. Text, while not particularly excit-

ing to some as a whole, is ripe with opportunity in iOS.

118

First, I want to present some of the foundational beliefs I have about how text

should work in iOS apps. Some of these ideas have been met with pushback in my ca-

reer, and you might even find yourself disagreeing with a few. Whether you agree or

not, I hope that these items make you consider how you are treating text in your de-

signs and apps:

1. Text should respond to accessibility needs over design preferences.

2. Text should typically opt to wrap, not clip, its contents.

3. Text should convey hierarchy and meaning through font sizes, weight, and

colors.

4. Text should leverage platform features to help people use that text how

they want to, not how you think they should.

As we go on, I think you’ll find that all the tips I list support those positions. To that

end, it helps to know about the tools you have at your disposal:

UIKit

Control Purpose Example

UILabel Short form text display, not meant for editing. Labels, headers, etc.

UITextField Single line text display, meant for editing. Email address entry

UITextView Multi-line text display, meant for long form
editing.

Writing a chapter in a book.

TextKit2 Meant for lower level text rendering. Custom text controls.

And, over in SwiftUI:

- Text correlates to UILabel

- TextField correlates to UITextField

119

- TextEntry correlates to UITextView

Note that TextKit 2 isn’t directly available in SwiftUI, but it might be used for rendering

under the hood — I’m honestly not sure. But, you can use representables to bridge

those things over to your SwiftUI projects if you require them. With that, let’s dive right

into how to make text that works with some tips.

Tips

Dynamic Type and Text Styles

If you only take away one thing from this chapter, this should be it — use Dynamic

Type. There are many, many compelling reasons to use it. There are not very many rea-

sons to skip it.

People should decide how legible, thick, thin, large or small their text should be —

and as designers and developers, we should accommodate that. Thankfully, in SwiftUI,

you almost have to try to not use Dynamic Type from an API level.

Out of the box…

Text("Testing!")

 …SwiftUI will use the .body text style. Unless you specify an explicit font size, SwiftUI

is using Dynamic Type.

To that end, setting a new font should typically be done using the func sys-

tem(_ style: Font.TextStyle, design: Font.Design? = nil, weight:

Font.Weight? = nil) -> Font modifier. When you use a TextStyle with Swif-

tUI over a hardcoded size to represent font sizes, you can rest assured your font will al-

ways scale with the person’s Dynamic Type settings.

120

In UIKit, Dynamic Type is more of an opt-in affair:

let dynamicLabel = UILabel(frame: .zero)

// Account for text wrapping

dynamicLabel.numberOfLines = 0

dynamicLabel.text = "Responds to Dynamic Type"

// Opt in to Dynamic Type

dynamicLabel.adjustsFontForContentSizeCategory = true

// Use a text style

dynamicLabel.font = UIFont.preferredFont(forTextStyle: .body)

When you leverage Dynamic Type, you also get away from thinking about specific font

sizes. It’s less about “This text should be 14 points” and more about “What role does

this text play?” From there, you can match it to the correct text style:

- Large Title: For primary or title headings.

- Title: For first level hierarchical headings.

- Title Two: For second level hierarchical headings.

- Title Three: For third level hierarchical headings.

- Headline: For body headings.

- Sub Headline: For sub headlines that follow headlines.

- Body: For primary text, perfect for reading long-form text.

- Callout: For text callouts, like tool tips.

- Footnote: As the name suggests, for footnotes.

- Caption: For standard captions.

- Caption Two: For alternative captions.

If you’re new to Dynamic Type, you may be thinking at this point that all of these

sounds more like semantic types, and not dynamic ones. If they are meant for a singu-

121

lar use case, what’s dynamic about them? Well, the dynamic parts are enabled by the

semantic meanings you use for fonts.

When you use a font in a text control with a .body text style — it’s dynamic in that it

could be one of several different sizes and weights based off the user’s accessibility

settings. Based off of what they’ve chosen, the system vends a font that is geared for a

“body” type of text scenario. That means it might be 14 points if the user prefers the

extra small settings, all the way up to 53 with the largest accessibility size. That’s no

small difference of 39 points!

For an advanced and in-depth discussion over Dynamic Type, please see the “Dy-

namic Type” chapter in the first book in this series covering accessibility.

Scrolling Views

Continuing on with Dynamic Type, we just saw that any text might be fairly reasonably

sized, or it could be very large. Consider the delta between these two examples.

Here’s some text at the regular .body size, basically an iPhone’s out-of-the-box de-

faults:

122

 

It doesn’t appear to ever need to scroll. The code assumes as much, too:

// Xcode -> SwiftUI -> TextThatWorksFig1View.swift

struct TextThatWorksFig1View: View {

 let markdown: LocalizedStringKey = """

Incredible Offer

Buy today for ~50%~ 75% off!

This deal won't last long, so _act_ today! Included in the offer:

- `Code` samples

- Design tips

- A Discord community.

Visit this [link](https://bestinclassiosapp.com) to claim your

discount.

"""

 var body: some View {

 Text(markdown)

 .padding()

 }

}

123

It fits onto a typical iPhone, and it’s easy to think that’d there be no reason for it to ever

clip or truncate. But, let’s go to one end of the extreme — the smallest available iPhone

and the largest available accessibility size:

 

And, now you see why nearly every view should be a scrolling view. In fact, I start im-

plementation with a scrolling view when I begin development, and I recommend you

do the same. In SwiftUI or UIKit, our fix for this example is incredibly easy — simply

wrap it in a ScrollView or UIScrollView. For example, in SwiftUI:

var body: some View {

 ScrollView {

 Text(markdown)

 .padding()

 }

}

124

Avoid Clipping or Truncation, Promote Wrapping Text

If your views are primarily scrolling, it also becomes easier to wrap text instead of let-

ting it clip or truncate. There are a few design reasons to clip text, but if the text is part

of a larger body of information — typically, you’ll want to avoid it. This is doubly true if

the text confirms some sort of action. Wouldn’t something like this be incredibly frus-

trating?

 

Sign up with…what? Email? Social? Something else?

In practice, this means that instead of providing maybe a flexible width with a

fixed height — you do the opposite. You’ll want flexible height, and optionally flexible

width. Or, you can leverage minimum scale factors — which will shrink your text to fit its

container down to a certain font size. Here’s what those two options might end up

looking like:

125

 

On the left side option, the button’s height expands to fit its contents. On the other

hand, using a minimum scale factor — the height is fixed, but the font adapts to the

space that it has available to avoid clipping text. This is available in both UIKit and

SwiftUI:

// SwiftUI

Text(markdown)

 .minimumScaleFactor(0.4)

// UIKit

someLbl.minimumScaleFactor = 0.4

Using a minimum scale factor may seem a bit nebulous at first — but it’s simple. When

you provide a value from 0 to 1, you’re saying how small from the text control’s current

font size that you want it to shrink down to. So, for example, say your font size is 10

points, and you use 0.5 as a minimum scale factor. Here, you’re telling the system “You

126

can shrink this down to, but not any lower than, a 5 point font size if it’ll fit the text. If it

still doesn’t fit — then just clip it.”

So, the text could end up being anywhere from 10 to 5 points — or you’ll just get

truncated if none of the sizes work.

Question Custom Fonts

Simply put, there is just so much that the system fonts give you. There are hundreds of

accessibility sizes, varying font weights and more. Plus, they align nicely with Apple’s

expansive set of built-in iconography, SF Symbols (something we will look more at in

the next chapter).

In short, you’ll be giving up quite a lot if you opt to use a custom font in your app.

Really question if it’s necessary, and as we said above — it’s better to lean into accessi-

bility needs when it comes to typography over design preferences. And, the system

fonts are tailor-made for every single accessibility feature that iOS offers.

If you do consider custom fonts, perhaps save them for limited uses where the

benefit of the font’s personality is still achieved without all the other baggage that

might be incurred if you used it all over. It minimizes risk while letting you inject some

branding personality into your designs. For example, perhaps only using a custom

font for just headers or titles might work nicely.

Again, for much more information over supporting Dynamic Type, please visit its

relevant chapter. For a small dose of what you might be in for in terms of implementa-

tion with custom fonts to support Dynamic Type, it really comes down to UIFontMet-

rics:

guard let futuroFont = UIFont(name: "Futuro-Bold", size: 20) else {

 print("Unable to load custom font.")

 return

127

}

// Assign scaled font

myLabel.font = UIFontMetrics(forTextStyle: .body)

 .scaledFont(for: futuroFont)

// Opt into Dynamic Type

myLabel.adjustsFontForContentSizeCategory = true

Editing Controller

The editing controller is what shows when you select some text and tap and hold on

it:

 

While iOS will vend sensible text for an editing controller, you’re also able to put in

your own custom actions in here too. Plus, even if you’ve got a custom text control —

so long as you override common editing patterns in UIKit, such as paste(_ sender:

128

Any?), and your control is first responder, these actions will still show up, too. Revisit

the chapter over keyboard experiences to see how to implement some of these if you

need a refresher.

But, to see how you might use this — consider a markdown editing app you’re de-

veloping. Perhaps you could include some common actions, like to make some text a

heading style. To do so, we can leverage functions on UITextViewDelegate to pro-

vide custom editing actions. Here, we add a “# H1” option to the menu:

// Xcode -> UIKit -> TextThatWorksFig1ViewController.swift

func textView(_ textView: UITextView,

 editMenuForTextIn range: NSRange,

 suggestedActions: [UIMenuElement]) -> UIMenu? {

 var customActions: [UIMenuElement] = []

 // If text is selected, add the custom action

 if range.length > 0 {

 let highlightAction = UIAction(title: "# H1") { _ in

 var attributedString = AttributedString(textView.text)

 if let slicedText = textView.text.substring(with:

range),

 let range = attributedString.range(of: slicedText) {

 attributedString.font =

UIFont.preferredFont(forTextStyle: .subheadline)

 attributedString[range].font =

UIFont.systemFont(ofSize: 24, weight: .bold)

 textView.attributedText =

NSAttributedString(attributedString)

 }

 }

 customActions.append(highlightAction)

 }

 // Return the system actions, plus our own

 return UIMenu(children: suggestedActions + customActions)

129

}

If you run this sample, you’ll now be able to make a heading styled font with any se-

lected text from the edit menu. As long as you append it to the suggestedActions

iOS gives you — you can vend your own actions alongside the system ones.

Plus, if the action is something the user may want to do several times (such as in-

denting text) you can have the editing controller persist even after the action been

tapped. This lets people perform the same action several times without having to re-

open the editing controller. You can do that by leveraging the attributes: argu-

ment in UIAction’s initializer. For our sample above, we’d just change its initializer to

achieve this:

// From this

let highlightAction = UIAction(title: "# H1") { _ in }

// To this

let highlightAction = UIAction(title: "# H1",

attributes: .keepsMenuPresented) { _ in }

The editing controller is a mainstay of iOS textual experiences, so don’t be afraid to

add in helpful actions to them. Plus, as we did in our example, use the APIs to add or

remove relevant actions based on whether text is selected. For example, in a mark-

down editing app — perhaps you’d want “Add Divider” as an option all the time, no

matter if text is selected or not.

Text Content Types

You’d be hard-pressed to find a feature in iOS more widely appreciated than text aut-

ofill. We’ve all had a two-factor authentication code come in, and then iOS simply fills

130

it in for us with the tap of a button. It’s extremely convenient, and it epitomizes user ex-

perience. Those types of experiences are driven by assigning a text content type.

These text content types assign a semantic meaning to the text control, and when

iOS has that information, it can use contextual cues from the system to suggest text

completions. In addition, it will pick the most relevant keyboard type to use too. In

short, this supercharges text entry for many scenarios. The system can use information

you’ve given it, such as names, relationships, locations and more — for easier form

completion, password resets and much more:

Value Purpose

URL Defines the content in a text input area as a URL.

namePrefix Defines the content in a text input area as a prefix or title,
such as Dr.

name Defines the content in a text input area as a name.

nameSuffix Defines content such as a suffix, like Jr.

givenName Defines text as a first name.

middleName Defines text as a middle name.

familyName Defines text as a family or last name.

nickname Defines text as a nickname.

organizationName Defines text as an organization.

jobTitle Defines text as a formal job title.

location Defines text as a general location, such as a point of inter-
est, an address, or another identifier for a location.

fullStreetAddress Defines text as a fully qualified street address.

streetAddressLine1 Defines text as the first line of an address.

streetAddressLine2 Defines text as the second line of an address.

131

addressCity Defines text as a city name.

addressCityAndState The same as above, only a state is included as well.

addressState Defines text representing a state’s name.

postalCode Suitable for postal code entry.

sublocality Text that represents a sub locality.

countryName Defines text that is a country or region’s primary name.

username Represents an account or login name.

password Suitable for password entry.

newPassword The same as above, only this is for when someone might
be creating a new password.

oneTimeCode The example we lead with — two-factor authentication
codes.

emailAddress Text entry for emails.

telephoneNumber Same as above, except for phone numbers.

creditCardNumber For credit card numbers.

dateTime Suitable for general dates, times, or a duration.

flightNumber For entering in flight numbers.

shipmentTrackingNumber For parcel delivery or general postal tracking.

Using them is as easy as setting a value for textContentType in UIKit or the identi-

cally named modifier in SwiftUI:

// UIKit

label.textContentType = .URL

// SwiftUI

Text("testing")

 .textContentType(.URL)

132

ViewThatFits

In a world where an iOS or iPadOS device could be any number of sizes or form factor

— it pays for text to be adaptable. This wasn’t always an easy task in SwiftUI, but it’s

been made much easier with ViewThatFits. As the name suggests, it allows you to

pass a closure of Views — and it’ll display the one that fits the available space.

Basically, provide the views from largest to smallest, and it’ll go down and pick the

one which first fits the given axis you specify (horizontal by default). This is perfect for

text. In this example, we provide a longer string if it’ll fit, but a shorter one if it doesn’t:

// Xcode -> SwiftUI -> TextThatWorksFig2View.swift

struct TextThatWorksFig2View: View {

 @State private var fontSize: CGFloat = 20.0

 var body: some View {

 VStack {

 Text("New Menu Items!")

 .font(.largeTitle.bold())

 Image("Oriental Food")

 .resizable()

 .scaledToFit()

 Text("Abbreviated - see code sample")

 .font(.caption)

 .padding(.bottom, 16)

 ViewThatFits {

 Text("Try it out for free today!")

 Text("Try today!")

 }

 .font(.system(size: fontSize,

 weight: .black,

 design: .default))

 }

 .padding()

 .onTapGesture {

 fontSize = (fontSize == 20.0) ? 40.0 : 20.0

133

 }

 }

}

If you ran the sample on your phone, depending on the screen size available, it’ll tog-

gle between the two strings of "Try it out for free today!" and “Try today!” based on

how much width is available when you tap on it. This toggles the font size up and

down accordingly, this forces ViewThatFits to reevaluate if the larger string still fits

on the horizontal axis even with the larger text. If it doesn’t, we’ll get the shorter string.

Variable System Fonts

Another reason that system fonts are so handy is that they offer several stylistic choic-

es you can apply to them via font widths. This allows for more creative freedom in your

typography. Photos’ memory feature on iOS uses these, and they look great. Here’s an

example from my device, where “Bennett Playing” is using the expanded font width:

 

134

The available font widths we can use are:

- Compressed

- Condensed

- Expanded

- Standard (the default)

It’s available in both SwiftUI and UIKit:

// SwiftUI

Text("Expanded Font")

 .fontWidth(.expanded)

// UIKit

someLbl.font = .systemFont(ofSize: 20,

 weight: .bold,

 width: .expanded)

When you combine different font widths with weights, you can achieve some very nice

effects. In addition, these animate nicely in SwiftUI as well — so you could interpolate

between a compressed font width to an expanded one.

Leverage Safe Areas

Who knows what else Apple will add in terms of hardware. A few years ago, it was the

notch. Today, as I write this — it’s the Dynamic Island. The point is, you would rather not

have to play a guessing game when displaying text which won’t be occluded by these

hardware features.

The easiest way to do that is to respect safe area layout guides and margins. Be-

yond just hardware additions, there are several other reasons to leverage them from

135

handling multitasking, external displays, display zoom, internationalization features,

differing resolutions or colors spaces — the list goes on.

In SwiftUI, the layout system will use the safe area layout under the hood for you.

In fact, you’d have to manually opt out of this behavior — so in reality, you don’t have

to think about it too much. But, even in container views — especially in UIKit, it pays to

constraint to the safe area layout guide. An example of this can be found in the previ-

ous UIKit example:

// Xcode -> UIKit -> TextThatWorksFig1ViewController.swift

NSLayoutConstraint.activate([

 textView.widthAnchor.constraint(equalTo:

view.safeAreaLayoutGuide.widthAnchor),

 textView.heightAnchor.constraint(equalTo:

view.safeAreaLayoutGuide.heightAnchor),

 textView.centerXAnchor.constraint(equalTo:

view.safeAreaLayoutGuide.centerXAnchor),

 textView.centerYAnchor.constraint(equalTo:

view.safeAreaLayoutGuide.centerYAnchor)

])

Use Xcode Previews for Both UIKit and SwiftUI

There is no better way to quickly test font sizes than Xcode Previews. This is true for

both UIKit and SwiftUI. By using the .sizeCategory environment key, you can either

loop through all the content size categories or specify individual ones.

This is precisely how I demonstrated a previous example in this chapter, where we

saw the need for scroll views. I simply used the smallest size and the largest size for

the Xcode Preview:

// Xcode -> SwiftUI or UIKit -> TextThatWorksFig1View.swift

136

struct TextThatWorksFig1View_Previews: PreviewProvider {

 static var previews: some View {

 // Small size

 TextThatWorksFig1View()

 .environment(\.sizeCategory, .extraSmall)

 // The largest

 TextThatWorksFig1View()

 .environment(\.sizeCategory,

.accessibilityExtraExtraExtraLarge)

 }

}

Plus, you can use the same trick with UIKit views. In fact, that’s how I develop the ma-

jority of this book series’ UIKit samples — by using Xcode Previews! If you look in the

sample project under Logistical - No Code Samples Here --> Preview

Helpers you’ll see code I have to use UIKit along with Xcode Previews. Please don't

hesitate to steal it for your own projects to quickly test things like font sizes.

137

Three Key Takeaways

1. Try to follow the foundational rules of text in your apps to make sure it

works well for everyone.

2. Text, above all, is meant to convey information — so respond to all the ways

it could be displayed.

3. Leverage platform features to make sure people can get text in and out

quickly and use it how they want.

Drag and Drop
Drag and drop opens up so many powerful flows, and for my money — it’s a critical

feature to support in your apps. At its core, drag and drop usually opens up three pri-

mary interactions:

1. Move this thing from here to there (a move).

2. Take this data, but also put it somewhere else (a copy).

3. Take this thing, but reorder it within this container (a reorder).

Think about drag and drop on macOS, a core interaction on the platform for longer

than some of you reading this have been alive. It’s what made the operating system

earn its “It just works”, or “Things are easier to do” monikers. Want to take something

from downloads and move it to the desktop? Just drag it from downloads, and drop it

on the desktop. Done.

138

By supporting drag and drop — you’re opening up the interactions that seem to

make the most sense to people, and have them available when they want to use them.

Here’s what I mean by that; Whatever seems to be the most obvious way to do some-

thing, is likely the way it should work. That rings true of our downloads example I just

mentioned.

“How can I move this from my downloads to the desktop? Hmmm, maybe I can

just drag it.” But now, you extend that line of thinking to your iOS apps.

When breaking down drag and drop, what we’re really dealing with are two core

pieces; a drag source and a drop destination. That’s true whether you’re using UIKit or

SwiftUI, though their APIs represent them quite differently. As we go along, we’ll en-

sure drag sources are reliable, informative and smooth — whereas we’ll work to make

sure that drag destinations are obvious, provide feedback and are lenient.

Before we look at how it works under the hood, it’s a good time to think about

how many drag and drop operations are found throughout iOS. There are multitudes

of them, and it’s not uncommon to see a tweet catch fire that says something similar to

“What!! Why did nobody tell me you could do this 🤯 ! A gif of some drag and drop

things happening”

To illustrate this — you can start a drag inside of Photos, hold down your finger and

go home. Then, open up Messages and drop it right inside a chat. You could drag a

photo, stay within the Photos app, and drop it into another album. On iPadOS, things

get even more interesting with multiple windows — then you could easily move things

via drag and drop all throughout the system and or to other apps.

139

How it Works

As always, we’ll cover both UIKit and SwiftUI, and this is certainly a case where the APIs

don’t really have much in common across the two frameworks. But, there is one API

that both can use — so let’s start with that : NSItemProvider. An item provider is

packed up alongside drags, and their drops, to represent the “what” of the item being

used.

By using UTIs (uniform type identifiers) — the system can infer the payload of a

drop and a consumer can operate on it. The power of item providers is that their cor-

responding UTI can be hierarchical in nature. Take a photo, for example, — there are so

many formats, right? Is it .png, .jpeg — maybe a .raw photo?

No matter the format, there is a UTI that can be used to represent it. So if a spe-

cialized photo editing app took the drop — perhaps it would be most interested in

the .raw representation of the file. Whereas something like Messages would likely do

just fine with the .png or .jpeg versions. Type identifiers help apps work out how to

best use what was actually dropped, and represent what kind of data started the drag.

So, to recap — when you assign to the array of UTIs in an item provider, you’re cre-

ating a promise. And, that promise is saying “I can deliver these types of file formats to

you, but it’s up to you to choose with one you’re most interested in.” And, the word

promise is very deliberate because when the drag starts — no operations of that file

are happening — you’re just promising that you can deliver them when it matters.

Now, let’s dive into each platform to get a feel for how drag and drop works. Just

a word of warning, UIKit has a lot going on — but it also makes it extremely flexible and

powerful. SwiftUI, while as of iOS 16, has less to offer — but it’s much simpler to imple-

ment.

UIKit

140

When someone begins a drag, UIKit constructs a drag item (UIDragItem). The

part of your interface which constructs that drag is referred to as the interaction dele-

gate (UIDragInteractionDelegate). In the drop zone, it’s the opposite — that con-

trol is the destination, as it’ll have to implement UIDropInteractionDelegate.

You’ll hear the word interaction a lot when dealing with drag and drop in UIKit, as it

basically represents an entire drag and drop operation from start to finish.

As we just said, all of this starts with an item provider. If you're drag and dropping

an NSSting, NSURL, UIColor, UIImage, or NSAttributedString — those all imple-

ment the necessary protocols for being an item provider for free. In your own custom

models, you’ll need to implement at least NSItemProviderWriting and possibly

NSItemProviderReading.

So, let’s look at the process from start to finish. We’ll make a regular UIView be

draggable, and it’ll be dropped onto another UIView that’ll change a text label text to

whatever the drag view’s text label’s text is.

Starting with the drag view, we’ll need to do three things:

1. Create an NSItemProvider to create the drag promise.

2. Adopt UIDragInteraction to let the system take the item provider, and

put it into a UIDragItem.

3. Finally, ensure our view installs a UIDragInteaction into its UIInterac-

tion array, and it includes the drag interaction delegate (which, again, is

the view itself).

Here’s that code in action:

// Xcode -> UIKit -> DragDropFig5ViewController.swift

class NumberDragView: UIView {

141

 private static let textNumber: String = "5"

 private lazy var numberLabel: UILabel = {

 /* Label setup ommitted for brevity */

 return numberLabel

 }()

 private let itemProvider: NSItemProvider = .init(object:

textNumber as NSString)

 override init(frame: CGRect) {

 /* Setup code ommitted for brevity */

 installDragInteraction()

 }

 required init?(coder: NSCoder) {

 fatalError("init(coder:) has not been implemented")

 }

 private func installDragInteraction() {

 let dragInteraction = UIDragInteraction(delegate: self)

 addInteraction(dragInteraction)

 }

}

extension NumberDragView: UIDragInteractionDelegate {

 func dragInteraction(_ interaction: UIDragInteraction,

itemsForBeginning session: UIDragSession) ->

[UIDragItem] {

 return [UIDragItem(itemProvider: itemProvider)]

 }

}

There, you can see all three steps occurring. There is an item provider, a drag interac-

tion installed, and the view adopts UIDragInteractionDelegate. That’s all it takes

to make our view draggable — and if you ran the code as is, right now, you’d be able

to drag it around.

142

Understanding Drag Sessions

To go a little further with we just did above, you’ll need to understand that a

UIDragSession was started. Once the gesture recognizer (which iOS installs and

handles, by the way) kicks off a drag, the session for managing a drag activity is creat-

ed. This way, iOS can invokes the drag interaction’s dragInteraction(_:items-

ForBeginning:) to start a drag that houses the promises found in the UIDragItem.

Then, the drag session is populated from that — and the user can move it around and

drop it where it needs to go.

Next, we want another view which accepts a drop — and the process is not all that

different from what we just did, except we basically just switch around the protocol

adoption for drops instead of drags.

Again, there are three core things to do:

1. Add a UIDropInteraction to your view.

2. Adopt UIDropInteractionDelegate

3. At the very least, implement dropInteraction(interaction:, ses-

sionDidUpdate session) -> UIDropProposal and

 dropInteraction(_ interaction:, performDrop session).

Here’s what it looks like. When we drop the view above onto this one, it’ll change

its text label’s text to the one that was dropped:

class NumberDropView: UIView {

 private lazy var numberLabel: UILabel = {

 /* Label setup omitted for brevity */

 return numberLabel

 }()

 override init(frame: CGRect) {

 /* Init code omitted for brevity */

143

 installDropInteraction()

 }

 required init?(coder: NSCoder) {

 fatalError("init(coder:) has not been implemented")

 }

 private func installDropInteraction() {

 let dropInteraction = UIDropInteraction(delegate: self)

 addInteraction(dropInteraction)

 }

}

extension NumberDropView: UIDropInteractionDelegate {

 // What can be dropped onto this view?

 func dropInteraction(_ interaction: UIDropInteraction, canHandle

session: UIDropSession) -> Bool {

 return session.canLoadObjects(ofClass: String.self)

 }

 // What should happen when its dropped here?

 func dropInteraction(_ interaction: UIDropInteraction,

sessionDidUpdate session: UIDropSession) ->

UIDropProposal {

 return UIDropProposal(operation: .copy)

 }

 // Finally, load in the dropped data

 func dropInteraction(_ interaction: UIDropInteraction,

performDrop session: UIDropSession) {

 let _ = session.loadObjects(ofClass: String.self)

{ textItems in

 guard let firstString = textItems.first else {

 return

 }

 self.numberLabel.text = "Dropped\n\(firstString)"
 }

 }

144

}

As you can see, I implemented three totals delegate methods — and have commented

why on each of them. Basically, iOS gives us a chance to tell it ahead of time whether

we can accept the drop. What we want to do with it once it’s dropped (copy it) and

how to consume it (pull out the string, and put it in our text label).

Understanding Drop Sessions

When a drag begins, the system also creates a UIDropSession which lets the

system peek into the protocol functions we implemented above. That way, it’ll know

how it can handle the drop (or if it can at all). It updates the interface accordingly, and

you’ll notice we get the green plus symbol which shows for free (that is created based

on what we returned for our UIDropProposal). Finally, when the drop occurs, it’s

consumed asynchronously and a view uses the data.

SwiftUI

Setting up drag and drop for SwiftUI is, in comparison, very little code when com-

pared to UIKit. There are two core concepts to understand, and that’s about it. The first

is that you’ll be using either NSItemProvider (as we did with UIKit) or (more prefer-

ably) the Transferable protocol to create the promise of data delivery. The second

is that all of the drag and drop is set up with modifiers.

To construct promises for drag and drop, though, you should use Transferable,

which we talked about in the AirDrop chapter. The Transferable property is where

things are headed in SwiftUI, especially in relation to drag and drop, so I recommend

to others that they use it over an item provider. Apple themselves mention this in the

documentation:

In your modifiers, provide or accept types that conform to the Transferable pro-

tocol, or that inherit from the NSItemProvider class. When possible, prefer us-

145

ing transferable items. Reference: https://developer.apple.com/documenta-

tion/swiftui/drag-and-drop

That said, after all we just just went through to get drag and drop working in UIKit, you

might be offended at the following code sample. In fact, we can wire up a drag view

with just one modifier:

// Xcode -> SwiftUI -> DragDropFig1View.swift

struct DragDropFig1View: View {

 var body: some View {

 RoundedRectangle(cornerRadius: 10)

 .fill(Color.blue)

 .frame(width: 100, height: 100)

 .overlay {

 Text("Drag Me")

 .foregroundColor(.white)

 }

 .draggable("Drag Me")

 }

}

…and that’s it. That square can now be dragged all around, and once delivered — its

payload would be a String reading “Drag Me”. I’d like to note that this would work with

a UIKit app, too. If it’s looking for any Uniform Type Identifier dealing with text, it would

accept a drop with a String from a SwiftUI app.

There are basically two different ways to make things draggable. One is to use the

variants which use the Transferable protocol. This is what we did above, but you

may not have caught it because I implicitly passed in something that adopts the pro-

tocol already, a String value:

.draggable("Drag Me")

https://developer.apple.com/documentation/swiftui/drag-and-drop?changes=_8
https://developer.apple.com/documentation/swiftui/drag-and-drop?changes=_8

146

You can make your own custom types adopt Transferable (again, we did this in the

AirDrop chapter) or use several of the types that already do it for you (links, images,

etc).

The next way is to use a modifier which accepts NSItemProvider:

// Xcode -> SwiftUI -> DragDropFig2View.swift

/* Same code as previous example to */

.onDrag {

 return .init(object: "Drag Me" as NSString)

}

This is the same as above, except that the .onDrag modifier wants you to return an

NSItemProvider. It’s also a closure, so if you need to run logic to construct the item

provider you can do that here.

So, that covers the two ways to make things draggable, but if you type those mod-

ifiers into Xcode, you’ll see that there are four of them. The other two variants allow

you to return a custom preview, so if you wanted the drag item to look different from

the view itself — this is where you could return something else.

Here, once the rectangle starts a drag — the drag item is a circle instead of a

square:

// Xcode -> SwiftUI -> DragDropFig3.view

RoundedRectangle(cornerRadius: 10)

 .fill(Color.blue)

 .frame(width: 100, height: 100)

 .overlay {

 Text("Drag Me")

 .foregroundColor(.white)

 }

 .draggable("Drag Me") {

 Circle()

147

 .fill(Color.cyan)

 .frame(width: 100, height: 100)

 .overlay {

 Text("Drag in progress")

 .font(.callout)

 }

 }

Next, drops. Drops, naturally, are a little more involved but not much more so. There

are a few different ways to handle it:

1. Use a simple modifier to specify a UTType to accept, and operate on it.

2. Specify a UTType — but handle the details in a DropDelegate.

3. Finally, use a drop destination to specify types to accept that adopt

Transferable, and act on those within a closure.

The first is the simplest to use, the second expands on that and allows for more call-

backs during the drop operation, and the third is the most SwiftUI-oriented of the

three. Let’s look at each.

Method One

Here, we’ll identify the UTType identifiers we’re interested in, and then load in

data from the item providers passed into us.

// Xcode -> SwiftUI -> DragDropFig3View.swift

@State private var targeted: Bool = false

var methodOneDropZone: some View {

 Rectangle()

 .fill(Color.red)

 .overlay {

 Text("Method\n1")
 .font(.title)

 .fontWeight(.black)

 .foregroundColor(.white)

148

 }

 .frame(maxHeight: 240)

 .onDrop(of: [UTType.text], isTargeted: $targeted)

{ providers in

 guard let firstProvider = providers.first,

 firstProvider.canLoadObject(ofClass: String.self)

else {

 return false

 }

 // Load a String from the firstProvider

 return true

 }

}

Method Two

This method involves creating a Struct or object which conforms to DropDele-

gate, which looks an awful lot like UIKit’s UIDropInteractionDelegate. Again, you

specify the types you’re interested in. This way offers the most flexibility, as we can

easily do things like animate the drop destination when a drag enters or exits:

// Xcode -> SwiftUI -> DragDropFig3View.swift

@State private var expandZoneTwo: Bool = false

var methodTwoDropZone: some View {

 Rectangle()

 .fill(Color.purple)

 .overlay {

 Text("Method\n2")
 .font(.title)

 .fontWeight(.black)

 .foregroundColor(.white)

 }

 .frame(maxHeight: 240)

 .shadow(radius: expandZoneTwo ? 80 : 0)

 .animation(.default, value: expandZoneTwo)

 .onDrop(of: [UTType.text],

149

 delegate: DropZoneDelegate(animate: $expandZoneTwo))

}

struct DropZoneDelegate: DropDelegate {

 @Binding var animate: Bool

 func validateDrop(info: DropInfo) -> Bool {

 return info.hasItemsConforming(to: [UTType.text])

 }

 func performDrop(info: DropInfo) -> Bool {

 if let textProvider = info.itemProviders(for:

[UTType.text]).first {

 let _ = textProvider.loadTransferable(type: String.self)

{ result in

 switch result {

 case .success(let text):

 print("Loaded \(text)")

 case .failure(let error):

 print("Couldn't load text from drop: \

(error.localizedDescription)")

 }

 }

 }

 animate = false

 return true

 }

 func dropEntered(info: DropInfo) {

 animate = true

 }

 func dropUpdated(info: DropInfo) -> DropProposal? {

 return .init(operation: .copy)

 }

 func dropExited(info: DropInfo) {

 animate = false

150

 }

}

Method Three

Finally, method three allows you to not worry about the item providers altogether,

and just operate on the array of items you get back based on the UTType you want,

along with the location of where the drop occurs:

// Xcode -> SwiftUI -> DragDropFig3View.swift

var methodThreeDropZone: some View {

 Rectangle()

 .fill(Color.green)

 .overlay {

 Text("Method\n3")
 .font(.title)

 .fontWeight(.black)

 .foregroundColor(.black)

 }

 .frame(maxHeight: 240)

 .dropDestination(for: String.self) { items, location in

 let _ = items.first ?? ""

 return true

 }

}

Tips

Collection and Table View Drag and Drop Support

Both collection and table view offer dedicated delegate methods and protocols to im-

plement drag and drop. The good news? They don’t reinvent the wheel at all. The rea-

151

son we started looking at how to roll a drag and drop interaction all on your own is to

ensure you get the concepts.

To that end — all that table and collection view are doing is exposing those same

concepts, except they express them in terms of index paths. You can also easily sup-

port drag and drop reordering using a diffable data source and these protocols.

Here’s an end-to-end example with UITableView (though it’s the same thing with

collection view — the naming is just different).

Please open up this code sample and peek around yourself, and you’ll find that it

all looks the same as setting up the drop yourself. In fact, it’s even a bit easier:

// Xcode -> UIKit -> DragDropFig1ViewController.swift

class MassEffectTableDataSource: UITableViewDiffableDataSource<Int,

MassEffectGame> {

 override func tableView(_ tableView: UITableView, canMoveRowAt

indexPath: IndexPath) -> Bool {

 return true

 }

 // Reodering

 override func tableView(_ tableView: UITableView, moveRowAt

sourceIndexPath: IndexPath, to destinationIndexPath:

IndexPath) {

 guard let fromGame = itemIdentifier(for: sourceIndexPath),

 sourceIndexPath != destinationIndexPath else

{ return }

 var snap = snapshot()

 snap.deleteItems([fromGame])

 if let toGame = itemIdentifier(for: destinationIndexPath) {

 let isAfter = destinationIndexPath.row >

sourceIndexPath.row

152

 if isAfter {

 snap.insertItems([fromGame], afterItem: toGame)

 } else {

 snap.insertItems([fromGame], beforeItem: toGame)

 }

 } else {

 snap.appendItems([fromGame], toSection:

sourceIndexPath.section)

 }

 apply(snap, animatingDifferences: false)

 }

}

class DragDropFig1ViewController: BaseSampleViewController {

 var videogames: [MassEffectGame] = MassEffectGame.data

 let tableView = UITableView(frame: .zero, style: .insetGrouped)

 lazy var datasource: MassEffectTableDataSource = {

 let datasource = MassEffectTableDataSource(tableView:

tableView, cellProvider: { (tableView, indexPath, model) ->

UITableViewCell? in

 let cell = tableView.dequeueReusableCell(withIdentifier:

"cell", for: indexPath)

 cell.textLabel?.text = model.name

 return cell

 })

 return datasource

 }()

 override func viewDidLoad() {

 super.viewDidLoad()

 tableView.register(UITableViewCell.classForCoder(),

forCellReuseIdentifier: "cell")

 view.addSubview(tableView)

 tableView.frame = view.bounds

153

 tableView.autoresizingMask =

[.flexibleWidth, .flexibleHeight]

 tableView.dragDelegate = self

 tableView.dropDelegate = self

 tableView.dragInteractionEnabled = true

 tableView.backgroundColor = .systemGroupedBackground

 var snapshot = datasource.snapshot()

 snapshot.appendSections([0])

 snapshot.appendItems(videogames, toSection: 0)

 datasource.applySnapshotUsingReloadData(snapshot)

 }

}

extension DragDropFig1ViewController: UITableViewDragDelegate {

 func tableView(_ tableView: UITableView, itemsForBeginning

session: UIDragSession, at indexPath: IndexPath) ->

[UIDragItem] {

 guard let item = datasource.itemIdentifier(for: indexPath)

else {

 return []

 }

 let itemProvider = NSItemProvider(object: item.id.uuidString

as NSString)

 let dragItem = UIDragItem(itemProvider: itemProvider)

 dragItem.localObject = item

 guard let cell = tableView.cellForRow(at: indexPath) else

{ return [dragItem] }

 let cellInsetContents = cell.contentView.bounds.insetBy(dx:

2.0, dy: 2.0)

 dragItem.previewProvider = {

 let dragPreviewParams = UIDragPreviewParameters()

 dragPreviewParams.visiblePath =

UIBezierPath(roundedRect:cellInsetContents, cornerRadius: 8.0)

154

 return UIDragPreview(view: cell.contentView, parameters:

dragPreviewParams)

 }

 return [dragItem]

 }

}

extension DragDropFig1ViewController: UITableViewDropDelegate {

 func tableView(_ tableView: UITableView, dropSessionDidUpdate

session: UIDropSession, withDestinationIndexPath

destinationIndexPath: IndexPath?) -> UITableViewDropProposal {

 return UITableViewDropProposal(operation: .move,

intent: .insertAtDestinationIndexPath)

 }

 func tableView(_ tableView: UITableView, performDropWith

coordinator: UITableViewDropCoordinator) {

 // If you don't use diffable data source, you'll need to

reconcile your local data store here.

 // In our case, we do so in the diffable datasource

subclass.

 }

}

Some things to note:

1. You need to subclass diffable datasource to get reordering to work. This

isn’t obvious at first, but that’s where the methods are exposed to handle it.

2. You’ll need to set a few flags, specifically — you’ll have to assign to drag-

Delegate, dropDelegate and set dragInteractionEnabled to true.

3. Finally, implement the required methods in UITableViewDropDelegate

and UITableViewDragDelegate.

155

Supporting Multiple Item Drags

Also referred to as flocking, supporting multiple item drags is really just a matter of

implementing one more delegated method in UIDragInteractionDelegate. By

specifying more UIDragItem instances to return based off a touchpoint, you can add

multiple items to a drag — in fact, there is no limit.

Photos is a great example. Start dragging around a photo, and while you’re doing

that — tap several other photos with a free finger. You’ll see it just adds them to the ex-

isting drag interaction. To do this yourself, you’ll want to implement the following

(itemsForAddingTo):

extension DragDropFig2ViewController: UIDragInteractionDelegate {

 func dragInteraction(_ interaction: UIDragInteraction,

itemsForBeginning session: UIDragSession) -> [UIDragItem] {

 return [UIDragItem(itemProvider: .init(object: "" as

NSString))]

 }

 // This adds items to an existing drag interaction

 func dragInteraction(_ interaction: UIDragInteraction,

itemsForAddingTo session: UIDragSession, withTouchAt point:

CGPoint) -> [UIDragItem] {

 return [UIDragItem(itemProvider: .init(object: "" as

NSString))]

 }

}

Open up DragDropFig2ViewController to see this in action. Here, the drop zone

below will count out how many red squares you dropped on top of it. While dragging

a square, tap another one — add, you’ll see that it gets added to the drag session:

156

 

Support Spring Loading

Spring loading works in tandem with drag and drop. It lets people activate controls by

dragging content over them — essentially working as a button tap. This is helpful when

navigating around with drag and drop, such as wanting to pop a view from a naviga-

tion stack. The purpose of spring loading is to allow for easy navigation even when

someone is in the middle of a drag interaction.

Various controls within UIKit, such as buttons, adopt this out of the box for you as

they conform to UISpringLoadedInteractionSupporting. Of course, you can

make a custom view support this behavior, too, by adding an interaction:

let spring = UISpringLoadedInteraction { interaction, context in

 // Handle interaction

}

view.addInteraction(spring)

157

If you open DragDropFig3ViewController.swift, you can try this out for your-

self. Drag the purple circle over the back button, and after about a second — you’ll that

it blinks and pops the view off the navigation stack (which is what tapping the back

button would do if it were tapped):

 

Add Clarity to Drop Zones

I think it helps to make droppable areas incredibly obvious. This is doubly true when

it’s outside a list context, where drag and drops are inherently understood by most

people.

To that end, when something can be dropped, give a visual cue to the user who

reveals it as a drop zone. There are delegate methods that are perfect for this in

UIDropInteractionDelegate.

158

Let’s enhance our initial number drop example from earlier in UIKit. Now, once a

drop enters — we’ll blow up the view a little and add a border. We’ll undo that if the

drop leaves, animating both of these interactions:

// Xcode -> UIKit -> DragDropFig5View.swift

// Make it obvious we can drop here

func dropInteraction(_ interaction: UIDropInteraction,

sessionDidEnter session: UIDropSession) {

 UIView.animate(withDuration: 0.25) {

 self.transform = .init(scaleX: 1.4, y: 1.4)

 self.layer.borderColor = UIColor.blue.cgColor

 self.layer.borderWidth = 8

 }

}

// Make it obvious when a drop leaves

func dropInteraction(_ interaction: UIDropInteraction,

sessionDidExit session: UIDropSession) {

 UIView.animate(withDuration: 0.25) {

 self.transform = .identity

 self.layer.borderWidth = 0

 }

}

And finally, if you’d like to perform any animations alongside the drop itself, there’s a

delegate function for that too:

// Perform when the drop occurs

func dropInteraction(_ interaction: UIDropInteraction, item:

UIDragItem, willAnimateDropWith animator: UIDragAnimating) {

 animator.addAnimations {

 self.transform = .identity

 self.layer.borderWidth = 0

 }

}

159

This is perfect because we’ll want to animate the view back to its original state if the

drop does occur within it — the same as we would if the user decided not to drop any-

thing there at all (i.e., the animations we added in dropInteraction(_ interac-

tion:, sessionDidExit:).

In SwiftUI, we accomplished the same things using our DropDelegate listed in

method two.

Customize Drag Sources in UIKit

Customizing the look of the items you drag around can make things feel a lot more

natural. Plus, in my opinion, the rounded corners you can easily apply make the ele-

ments you’re dragging around feel a little smoother too. The default view you’ll likely

get is a box, sharp-edged rectangle since several drags being in a list context.

To tweak this in UIKit, you can look to UIDragPreviewParameters. By supplying

it with a UIBezierPath, you can easily round off the corners of the view you’re drag-

ging. In this sample, we do that for a table view cell by returning preview parameters

inside a previewProvider closure found on the UIDragItem:

// Xcode -> UIKit -> DragDropFig1ViewController.swift

func tableView(_ tableView: UITableView, itemsForBeginning session:

UIDragSession, at indexPath: IndexPath) ->

[UIDragItem] {

 guard let item = datasource.itemIdentifier(for: indexPath) else

{

 return []

 }

 let itemProvider = NSItemProvider(object: item.id.uuidString as

NSString)

 let dragItem = UIDragItem(itemProvider: itemProvider)

 dragItem.localObject = item

160

 guard let cell = tableView.cellForRow(at: indexPath) else

{ return [dragItem] }

 let cellInsetContents = cell.contentView.bounds.insetBy(dx: 2.0,

dy: 2.0)

 // Customize the drag preview here

 dragItem.previewProvider = {

 let dragPreviewParams = UIDragPreviewParameters()

 dragPreviewParams.visiblePath =

UIBezierPath(roundedRect:cellInsetContents, cornerRadius: 8.0)

 return UIDragPreview(view: cell.contentView, parameters:

dragPreviewParams)

 }

 return [dragItem]

}

I want to point out that it’s straightforward to get lost and overwhelmed by the API sur-

face area on offer to customize how drag items look. So, here’s a quick breakdown of

the big players, and the good news is that, on their own, each is easy to use. It’s just a

matter of knowing what and when:

1. UIDragPreviewParameters: What we used above. Here, you can set the

appearance and shape of the drag item.

2. UIDragPreview: Houses the parameters, and is used to identify the view

to preview alongside those parameters.

3. UIDragPreviewTarget: The target of a source, or destination, of a drag

item — expressing coordinates to help with animations.

4. UITargetedDragPreview: Uses the preview target to package up a cus-

tomized drag preview, and can be used with parameters too.

161

Using a combination of these, you can change the drag preview view altogether to

look like something entirely different than what the drag view appears as. In SwiftUI,

we do this by using the trailing closure to provider a preview view (and there was an

example of that in the SwiftUI section above).

Offer Undo and Redo

An accidental drag and drop can happen, so make it easy to revert things back. As

soon as a drop occurs, it’s not a bad idea to use a banner of some sort to say “X

moved to Y” (or whatever applies) with an undo button in it. It’s not always immediate-

ly obvious of how to undo a drag and drop operation — so making an obvious undo is

not a bad idea.

Of course, you should still support the system’s undo and redo capabilities. For

more on that, be sure to read the entire chapter over it, “Undo and Redo” in the User

Experience book in this series.

162

Three Key Takeaways

1. Support as many drag and drop interactions as you can in your app — this

is a “the more, the better” situation.

2. Ensure you’ve designed your drag and drop interactions to be obvious, the

outcome of a drop should yield no surprises.

3. When designing for drag and drop, ask yourself if there are places to add

its three core flows (copy, move, or reorder).

Live Photos
With the revelation of 3D Touch (God rest its soul) came a new media format, the Live

Photo. The nascent paradigm fit in perfectly with the iPhone’s newly minted sensors

that could report how much force you were applying to the device’s display. This al-

lowed for the (now defunct, also — God rest its soul) peek and pop gestures.

These were some of my very favorite interactions on iOS, and it made the device

feel incredibly reactive. Just push down on a link, and you would “peek” into the re-

sulting page. Then, apply a bit more force, and it would “pop” into a full presentation.

The same thing applied to Live Photos — you could play the entire video portion back

with a slight push. I lament that this is all gone now (it’s largely replaced by context

menus and a very similar API and user experience) but none-the-less, Live Photos are

here to stay.

163

At their core, Live Photos are a hybrid between a short video and a picture. Apple

achieves this by capturing just a little bit of video before the photo was taken, and a lit-

tle bit after it was taken, too. The idea is that you get a better sense of the memory, it’s

“live” after all, than you might with a static image:

 

Though Live Photos maybe didn’t have their cultural moment as much as Apple

would’ve hoped, they are still the default format that pictures are taken in when using

the Camera app. That means, by proxy — they are likely the most popular media for-

mat around today, considering the billions of iPhone users.

So, in our apps — we primarily need to do one thing well, and that is display them

properly. While the majority of apps should rely on Apple’s first part photo picker in-

terfaces (which display them properly) — perhaps you have a photo import function of

some sort or have a small media picker of your own.

164

In such cases, displaying them properly so that they can actually show as a

bonafide Live Photo is key. If you simply displayed them as a static image, it could

confuse users or, worse, disappoint them when they expected a Live Photo instead.

Secondly, it’s possible to pick them apart and query their individual media aspects

in addition to capturing some of your own. This is decidedly more involved, and is

mostly a use case for media-based editing apps. But, it is possible — and you can even

create your own Live Photos to boot.

How it Works

The Data Model

Interacting with Live Photos all revolves around one data model — PHLivePhoto.

Similar to PHAsset which you may be familiar with, it contains the data to be used for

display purposes only. It doesn’t have the actual data which backs the Live Photo, just

as a UIImage doesn’t represent the data from the file from which it was loaded.

The tricky part with Live Photo support isn’t displaying them, though — it’s getting

them or creating them which can be…a bit of a pain. The issue is that there are a few

ways to do it, depending on what you’re trying to achieve. If you’re simply displaying a

Live Photo, then there is a quick and painless route since iOS 14. If you need their indi-

vidual media tracks of audio and video — then you’ve got some more work to do. Dou-

bly so if you’re trying to create your own Live Photo.

Continuing with that thought, if you want the assets backing a Live Photo — then

PHAssetResource is where you’ll head. By using PHAssetResourceManager — you

can get an instance of the video and audio files which Live Photos are created from.

While these resources are coupled with PHAsset, there is a way to grab the informa-

tion directly if you’ve got a Live Photo already.

165

For example, if you wanted to export the raw sources for a Live Photo for a photo

sharing app, you could do that with an existing PHLivePhoto you’re using for display

already:

let resources = PHAssetResource.assetResources(for: livePhoto)

// Now you could upload the sources to your server to reconstruct

later

We’ll look at this a bit more in the “Tips” section.

Loading Live Photos

So, loading Live Photos. As I mentioned earlier, there are a few ways this can work.

In fact, if you were to Google the situation right now — you may end up down a rabbit

hole of dated information that proposes more work than you probably need. If all

you’re doing is loading in a Live Photo — I’ve got a modern solution for you. Let’s start

there.

PHPickerViewController is a bit of a successor to UIImagePickerCon-

troller. Though they are both around and the latter hasn’t been officially deprecat-

ed in any way — the former has a few advantages:

- More user-selected assets that are available.

- Improved stability around larger, complex assets.

- More validations around invalid inputs, and more.

Another key advantage, though? You can access Live Photos without requiring library

access since it runs out of process. Given that this is available in SwiftUI too via the

PhotosPicker — it’s where you should start with fetching Live Photos:

// Xcode -> SwiftUI -> LivePhotosFig1View.swift

PhotosPicker("Choose Live Photo",

166

 selection: $livePhoto,

 maxSelectionCount: 1,

 selectionBehavior: .ordered,

 matching: .livePhotos,

 preferredItemEncoding: .automatic)

And in UIKit:

// Xcode -> UIKit -> LivePhotosFig1ViewController.swift

var config = PHPickerConfiguration()

config.filter = .livePhotos

config.selectionLimit = 1

let picker = PHPickerViewController(configuration: config)

picker.delegate = self

self.present(picker, animated: true)

In either case, you’ll be given a PHPickerResult in UIKit, or a PhotosPickerItem

in SwiftUI — and each of them have a similar way of handling loading. In fact, if you’ve

come from the Drag and Drop chapter recently, then you might remember that in UIK-

it you leverage ItemProvider and in SwiftUI you typically use Transferable.

When we are dealing with a PHPickerResult, we can grab the item provider

and load the Live Photo in directly:

// Xcode -> UIKit -> LivePhotosFig1ViewController.swift

guard let firstResult = results.first,

 firstResult.itemProvider.canLoadObject(ofClass:

PHLivePhoto.self) else {

 picker.dismiss(animated: true)

 return

}

firstResult.itemProvider.loadObject(ofClass: PHLivePhoto.self)

{ result

167

error in

 DispatchQueue.main.async {

 // Now we've got a Live Photo in `result`

 picker.dismiss(animated: true)

 }

}

In the case of SwiftUI, we turn to Transferable:

// Xcode -> SwiftUI -> LivePhotosFig1View.swift

selection.loadTransferable(type: PHLivePhoto.self) { result in

 switch result {

 case .success(let fetchedLivePhoto):

 print("Photo retrieved: \

(fetchedLivePhoto.debugDescription)")

 case .failure(_):

 print("Error occurred.")

 }

}

This method is the quickest and easiest way to get a Live Photo, and it’s the one I rec-

ommend. That, and by using PHAssetResource, you can get at their contents if you

need to by passing the found resources into PHAssetResourceManager. This should

cover your Live Photo bases.

If you didn’t want to go this route for whatever reason, you’d have to use UIIm-

agePickerController and specify both kUTTypeImage and kUTTypeLivePhoto

in its mediaTypes array. Then, the editingInfo dictionary will contain a livePhoto

key containing a PHLivePhoto.

Further, if you get a hold of a PHAsset that’s a Live Photo, you can fetch it using

that, too. By using PHImageManager, you can setup a fetch request:

let fetchOps = PHLivePhotoRequestOptions()

fetchOps.isNetworkAccessAllowed = true

168

fetchOps.deliveryMode = .highQualityFormat

fetchOps.progressHandler = { progress, error, stop, info in

 // Update progress in UI

}

// This would come from the picker

let asset = PHAsset()

PHImageManager.default().requestLivePhoto(for: asset,

 targetSize: .init(width: 400, height: 400),

 contentMode: .aspectFit,

 options: fetchOps) { livePhoto, info in

 // Display Live Photo

}

Showing Live Photos

Fortunately, displaying Live Photos is relatively straightforward. One reason is be-

cause there is only one class to do it, and that’s PHLivePhotoView. Using it is simple,

simply assign to its livePhoto property, and you’re done. It works nearly identical to

UIKit’s UIImageView.

We’ve seen a few snippets from the sample project, but here it is end-to-end using

UIKit:

// Xcode -> UIKit -> LivePhotosFig1View.swift

class LivePhotosFig1ViewController: BaseSampleViewController {

 private lazy var photosView: PHLivePhotoView = {

 let pv = PHLivePhotoView(frame: view.bounds)

 return pv

 }()

 override func viewDidLoad() {

 super.viewDidLoad()

 let openPickerAC: UIAction = .init(image: .init(systemName:

"plus.circle.fill")) { _ in

169

 var config = PHPickerConfiguration()

 config.filter = .livePhotos

 config.selectionLimit = 1

 let picker = PHPickerViewController(configuration:

config)

 picker.delegate = self

 self.present(picker, animated: true)

 }

 navigationItem.rightBarButtonItem = .init(systemItem: .add,

primaryAction: openPickerAC, menu: nil)

 view.addSubview(photosView)

 }

}

extension LivePhotosFig1ViewController:

PHPickerViewControllerDelegate {

 func picker(_ picker: PHPickerViewController, didFinishPicking

results: [PHPickerResult]) {

 guard let firstResult = results.first,

 firstResult.itemProvider.canLoadObject(ofClass:

PHLivePhoto.self) else {

 picker.dismiss(animated: true)

 return

 }

 firstResult.itemProvider.loadObject(ofClass:

PHLivePhoto.self) { result, error in

 DispatchQueue.main.async {

 self.photosView.livePhoto = result as? PHLivePhoto

 picker.dismiss(animated: true)

 }

 }

 }

}

170

As you can see, once a selection is made we simply assign to the photo view with the

PHLivePhoto, and we’re set. In SwiftUI, there is no LivePhotoView equivalent, so

we’d need to wrap it and make our own:

// Xcode -> SwiftUI -> LivePhotoView.swift

struct LivePhotoView: UIViewRepresentable {

 @Binding var livePhoto: PHLivePhoto?

 func makeUIView(context: Context) -> PHLivePhotoView {

 let phView = PHLivePhotoView()

 phView.delegate = context.coordinator

 return phView

 }

 func updateUIView(_ uiView: PHLivePhotoView, context: Context) {

 uiView.livePhoto = livePhoto

 }

 func makeCoordinator() -> Coordinator {

 Coordinator(parent: self)

 }

 class Coordinator: NSObject, PHLivePhotoViewDelegate {

 let parent: LivePhotoView

 init(parent: LivePhotoView) {

 self.parent = parent

 }

 func livePhotoView(_ livePhotoView: PHLivePhotoView,

canBeginPlaybackWith playbackStyle: PHLivePhotoViewPlaybackStyle) ->

{

 print("Live Photo can begin")

 return true

 }

171

 func livePhotoView(_ livePhotoView: PHLivePhotoView,

willBeginPlaybackWith playbackStyle: PHLivePhotoViewPlaybackStyle) {

 print("Live Photo will begin")

 }

 func livePhotoView(_ livePhotoView: PHLivePhotoView,

didEndPlaybackWith playbackStyle: PHLivePhotoViewPlaybackStyle) {

 print("Live Photo did end")

 }

 }

}

However, you may notice a few things, no matter if you’re using UIKit or SwiftUI—

namely, the result just looks like a regular image. While that’s true, the user can tap

down and hold, just like in the Photos app, and the Live Photo will play. There are ways

to make this more obvious, though, and we’ll look at those now in the “Tips” section.

Tips

The badge

One way to make Live Photo support more robust is to include the Live Photo badge

you might’ve seen in Photos:

172

 

The PHLivePhotoView doesn’t give us this out of the box — but we can access it.

Here’s how in SwiftUI:

// Xcode -> SwiftUI -> LivePhotoBadgeView

struct LivePhotoBadgeView: UIViewRepresentable {

 let livePhotoEnabled: Bool

 func makeUIView(context: Context) -> some UIView {

 let options: PHLivePhotoBadgeOptions =

livePhotoEnabled ? .overContent : .liveOff

 let badge = PHLivePhotoView.livePhotoBadgeImage(options:

options)

 let imageView = UIImageView(image: badge)

 return imageView

 }

 func updateUIView(_ uiView: UIViewType, context: Context) {

 // No op

 }

}

173

By using PHLivePhotoBadgeOptions, we can create a badge to show over our Live

Photos so that users know they can press down to play them. If you’ve got this dis-

abled for whatever reason, you can also pass .liveOff to get a different badge indi-

cating playback isn’t available.

Hint at Playback

Another nicety found in Photos on iOS is that when you swipe to a Live Photo, it hints

at playback by playing a few frames. It’s a wonderful effect, but unfortunately that’s not

built-in behavior, but we can reconstruct similar effects ourselves.

Thankfully, PHLivePhotoView has several hooks to control playback. For exam-

ple, when one is being scrolled into view — we could play back just a little of its con-

tents:

livePhotoView.startPlayback(with: .hint)

By starting playback with .hint, we can get an effect as seen in Photos. It plays a bit

of the motion without any sound. If you want full playback, of course, you could just

pass in .full here instead.

Remember, though, by default, any Live Photo view will support playback via its

gesture. Though, I should mention you have access to that too, via playbackGestur-

eRecognizer, and you could move it to an entirely different view if you saw fit.

Photo View Delegate

Earlier, when I wrapped the PHLivePhotoView in LivePhotoView — I also included

a Coorindator object. This is because the PHLivePhotoView has various hooks into

its lifecycle you can react to, if needed. This includes knowing the Live Photo started,

174

stopped and is about to start. Plus, you can even add more time that’s required to

press down to kick off playback if you needed too.

Inspecting Live Photos

Earlier, I mentioned it’s possible to interact with parts of a Live Photo. A common use

case might be an image editing or social media app, which might require all parts of

the Live Photo for uploading to later represent it elsewhere. Otherwise, it would just

be a static image.

To get at these, here’s a more robust code sample of what it would look like:

private func inspectLivePhoto() {

 guard let livePhoto = phLivePhoto else {

 return

 }

 let components = PHAssetResource.assetResources(for: livePhoto)

 let fetchOptions = PHAssetResourceRequestOptions()

 fetchOptions.isNetworkAccessAllowed = true

 components.forEach {

 PHAssetResourceManager.default().requestData(for: $0,

options: fetchOptions) { data in

 print("Handle data")

 } completionHandler: { error in

 print("Handle error")

 }

 }

}

Within the resources, you’ll find a video via PHAssetResourceType.pairedVideo

and the photo itself. Then, you can operate on each of them as you see fit (i.e. upload

them to your server).

175

Bonus: Web Support

Yes — this is not a book series over web development in any form. But, solely for infor-

mation purposes, I wanted to point out that Apple also provides a Javascript library to

work with LivePhotos on the web. It’s called LivePhotosKit JS and you can take a look

at it here.

To use it, you can either grab it via Apple’s content distribution network using a

<script> tag: <script src="https://cdn.apple-livephotoskit.com/lpk/

1/livephotoskit.js"></script> or using Node Package Manager:

npm install --save livephotoskit

https://developer.apple.com/documentation/livephotoskitjs

176

Three Key Takeaways

1. Live Photos are a proprietary media format only on Apple platforms.

2. Find novel ways to incorporate them into your apps.

3. At the very least, property support their playback.

